
frontmatter.fm August 8, 2006

Netcool®/Precision for IP
NetworksTM

3.6

Monitoring and RCA Guide

© 2006 Micromuse Inc., Micromuse Ltd.

All rights reserved. No part of this work may be reproduced in any form or by any
person without prior written permission of the copyright owner. This document is
proprietary and confidential to Micromuse, and is subject to a confidentiality
agreement, as well as applicable common and statutory law.

Micromuse Disclaimer of Warranty and Statement of Limited Liability

Micromuse provides this document “as is”, without warranty of any kind, either
express or implied, including, but not limited to, the implied warranties of
merchantability, fitness for a particular purpose or non-infringement. This
document may contain technical inaccuracies or typographical errors. Micromuse
may make improvements and changes to the programs described in this document
or this document at any time without notice. Micromuse assumes no responsibility
for the use of the programs or this document except as expressly set forth in the
applicable Micromuse agreement(s) and subject to terms and conditions set forth
therein. Micromuse does not warrant that the functions contained in the programs
will meet your requirements, or that the operation of the programs will be
uninterrupted or error-free. Micromuse shall not be liable for any indirect,
consequential or incidental damages arising out of the use or the ability to use the
programs or this document.

Micromuse specifically disclaims any express or implied warranty of fitness for high
risk activities.

Micromuse programs and this document are not certified for fault tolerance, and
are not designed, manufactured or intended for use or resale as on-line control
equipment in hazardous environments requiring fail-safe performance, such as in
the operation of nuclear facilities, aircraft navigation or communication systems,
air traffic control, direct life support machines, or weapons systems (“High Risk
Activities”) in which the failure of programs could lead directly to death, personal
injury, or severe physical or environmental damage.

Compliance with Applicable Laws; Export Control Laws

Use of Micromuse programs and documents is governed by all applicable federal,
state and local laws. All information therein is subject to U.S. export control laws
and may also be subject to the laws of the country where you reside.

All Micromuse programs and documents are commercial in nature. Use,
duplication or disclosure by the United States Government is subject to the
restrictions set forth in DFARS 252.227-7015 and FAR 52.227-19.

Trademarks and Acknowledgements

Micromuse and Netcool are registered trademarks of Micromuse.

Other Micromuse trademarks include but are not limited to: Netcool/OMNIbus,
Netcool/OMNIbus for Voice Networks, Netcool/Reporter, Netcool/Internet
Service Monitors, Netcool/ISM, Netcool/ISM Global Perspective, Netcool/NT
Service Monitors, Netcool/Wireless Service Monitors, Netcool/WSM,
Netcool/Usage Service Monitors, Netcool/USM, Netcool/Telco Service
Monitors, Netcool/TSM, Netcool/Fusion, Netcool/Data Center Monitors,
Netcool DCM, Netcool/Impact, Netcool/Visionary, Netcool/Precision, Netcool
Probes & Monitors, Netcool Desktops, Netcool Gateways, Netcool Impact/Data
Source Adaptors, Netcool EventList, Netcool Map, Netcool Virtual Operator,
Netcool/Precision for IP Networks, Netcool/Precision for Transmission
Networks, Netcool/Firewall, Netcool/Wave, Netcool/Webtop, Netcool TopoViz,
Netcool/SM Operations, Netcool/SM Configuration, Netcool/OpCenter,
Netcool/System Service Monitors, Netcool/SSM, Netcool/Application Service
Monitors, Netcool/ASM, Netcool/ISM WAM, Netcool/SM Reporter, Netcool
for Asset Management, Netcool/Realtime Active Dashboards,
Netcool/Dashboards, Netcool/RAD, Netcool for Voice over IP, Netcool for
Security Management, Netcool Security Manager, Netcool/Portal 2.0 Premium
Edition, Netcool ObjectServer, Netcool/RAD, Netcool GUI Foundation,
Netcool Installer, Netcool Licensing, Netcool/Software Developers Kit, NGF,
Micromuse Alliance Program, Micromuse Channel Partner, Authorized Netcool
Reseller, Netcool Ready, Netcool Solutions, Netcool Certified, Netcool Certified
Consultant, Netcool Certified Trainer, Netcool CCAI Methodology, Micromuse
University, Microcorrelation, Acronym, Micromuse Design, Integration Module

for Netcool, The Netcool Company, VISIONETCOOL, Network Slice.

Micromuse acknowledges the use of I/O Concepts Inc. X-Direct 3270 terminal
emulators and hardware components and documentation in Netcool/Fusion.
X-Direct ©1989-1999 I/O Concepts Inc. X-Direct and Win-Direct are
trademarks of I/O Concepts Inc.

Netcool/Fusion contains IBM Runtime Environment for AIX®, Java™
Technology Edition Runtime Modules © Copyright IBM Corporation 1999. All
rights reserved.

Netcool/Precision IP includes software developed by the University of California,
Berkeley and its contributors.

Micromuse acknowledges the use of MySQL in Netcool/Precision for IP
Networks. Copyright © 1995, 1996 TcX AB & Monty Program KB & Detron
HB Stockholm SWEDEN, Helsingfors FINLAND and Uppsala SWEDEN. All
rights reserved.

Micromuse acknowledges the use of the UCD SNMP Library in Netcool/ISM and
the Netcool/OMNIbus SNMP Writer Gateway. Copyright © 1989, 1991, 1992
by Carnegie Mellon University. Derivative Work - Copyright © 1996, 1998,
1999, 2000 The Regents of the University of California. All rights reserved.

Permission to use, copy, modify and distribute this software and its documentation
for any purpose and without fee is hereby granted, provided that the above
copyright notice appears in all copies and that both that copyright notice and this
permission notice appear in supporting documentation, and that the name of
CMU and The Regents of the University of California not be used in advertising
or publicity pertaining to distribution of the software without specific written
permission.

CMU AND THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL CMU OR THE REGENTS OF THE
UNIVERSITY OF CALIFORNIA BE LIABLE FOR ANY SPECIAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM THE LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

Portions of the Netcool/OMNIbus code are copyright (C) 1989-95 GROUPE
BULL.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the “Software”), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL GROUPE BULL BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Portions of the Netcool/ISM code are copyright ©2001, Cambridge Broadband
Ltd. All rights reserved.

Portions of the Netcool/ISM code are copyright © 2001, Networks Associates
Technology, Inc. All rights reserved.

Micromuse acknowledges the use of Viador Inc. software and documentation for
Netcool/Reporter. Viador © 1997-1999 is a trademark of Viador Inc.

Micromuse acknowledges the use of software developed by the Apache Group for
use in the Apache HTTP server project. Copyright © 1995-1999 The Apache
Group. Apache Server is a trademark of the Apache Software Foundation
(http://www.apache.org/). All rights reserved.

Micromuse acknowledges the use of software developed by Edge Technologies,
Inc. 2003 Edge Technologies, Inc. and Edge enPortal are trademarks or registered
trademarks of Edge Technologies Inc. All rights reserved.

Micromuse acknowledges the use of Merant drivers. Copyright © MERANT
Solutions Inc., 1991-1998.

The following product names are trademarks of Tivoli Systems or IBM
Corporation: AIX, IBM, OS/2, RISC System/6000, Tivoli Management
Environment, and TME10.

IBM, NetView/6000, Domino, Lotus, Lotus Notes, and WebSphere are either
trademarks or registered trademarks of IBM Corporation. VTAM is a trademark
of IBM Corporation.

Omegamon is a trademark of Candle Corporation.

Netspy is a trademark of Computer Associates International Inc.

The Sun logo, Sun Microsystems, SunOS, Solaris, SunNet Manager, Java are
trademarks of Sun Microsystems Inc.

SPARC is a registered trademark of SPARC International Inc. Programs bearing
the SPARC trademark are based on an architecture developed by Sun
Microsystems Inc. SPARCstation is a trademark of SPARC International Inc.,
licensed exclusively to Sun Microsystems Inc.

UNIX is a registered trademark of the X/Open Company Ltd.

Sybase is a registered trademark of Sybase Inc. Adaptive Server is a trademark of
Sybase Inc.

Action Request System and Remedy are registered trademarks of Remedy
Corporation.

Peregrine System and ServiceCenter are registered trademarks of Peregrine Systems
Inc.

HP, HP-UX and OpenView are trademarks of Hewlett-Packard Company.

InstallShield is a registered trademark of InstallShield Software Corporation.

Microsoft, Windows 95/98/Me/NT/2000/XP are either registered trademarks or
trademarks of Microsoft Corporation.

Microsoft Internet Information Server/Services (IIS), Microsoft Exchange Server,
Microsoft SQL Server, Microsoft perfmon, Windows Media, and Microsoft
Cluster Service are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries.

BEA and WebLogic are registered trademarks of BEA Systems Inc.

FireWall-1 is a registered trademark of Check Point Software Technologies Ltd.

Netscape and Netscape Navigator are registered trademarks of Netscape
Communications Corporation in the United States and other countries.
Netscape's logos and Netscape product and service names are also trademarks of
Netscape Communications Corporation, which may be registered in other
countries.

Micromuse acknowledges the use of Xpm tool kit components.

SentinelLM is a trademark of Rainbow Technologies Inc.

GLOBEtrotter and FLEXlm are registered trademarks of Globetrotter Software
Inc.

Red Hat, the Red Hat “Shadow Man” logo, RPM, Maximum RPM, the RPM
logo, Linux Library, PowerTools, Linux Undercover, RHmember, RHmember
More, Rough Cuts, Rawhide and all Red Hat-based trademarks and logos are
trademarks or registered trademarks of Red Hat Inc. in the United States and other
countries.

Linux is a registered trademark of Linus Torvalds.

SUSE is a trademark of SUSE LINUX Products GmbH, a Novell business.

Macromedia and Flash are trademarks or registered trademarks of Macromedia,
Inc. in the United States and/or other countries.

Nokia is a registered trademark of Nokia Corporation.

WAP Forum™ and all trademarks, service marks and logos based on these
designations (Trademarks) are marks of Wireless Application Protocol Forum Ltd.

Micromuse acknowledges the use of InstallAnywhere software in Netcool/WAP
Service Monitors. Copyright © Zero G Software Inc.

Orbix is a registered trademark of IONA Technologies PLC. Orbix 2000 is a
trademark of IONA Technologies PLC.

NetCharts is a registered trademark of Visual Mining, Inc. and/or its affiliates.

Micromuse acknowledges the use of Graph Layout Toolkit in Netcool/ Precision
for IP Networks. Copyright © 1992 - 2001, Tom Sawyer Software, Berkeley,
California. All rights reserved.

Portions of Netcool/Precision for IP Networks and Netcool/SM Reporter are ©
TIBCO Software, Inc. 1994-2006. All rights reserved. TIB and TIB/Rendezvous
are trademarks of TIBCO Software, Inc.

Portions of Netcool/Precision for IP Networks & Netcool/OMNIbus probes and
monitors are copyright © 1996-2005, Daniel Stenberg, <daniel@haxx.se>. All
rights reserved. Permission to use, copy, modify, and distribute this software for
any purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY
RIGHTS. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH
THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used
in advertising or otherwise to promote the sale, use or other dealings in this
Software without prior written authorization of the copyright holder.

Portions of Netcool/SM Reporter are copyrighted by DataDirect Technologies
Corp., 1991-2005.

Portions of Netcool/SM Reporter are copyright (c) 1990-1999 Sleepycat Software.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list
of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

3. Redistributions in any form must be accompanied by information on how to
obtain complete source code for the DB software and any accompanying software
that uses the DB software. The source code must either be included in the
distribution or be available for no more than the cost of distribution plus a nominal
fee, and must be freely redistributable under reasonable conditions. For an
executable file, complete source code means the source code for all modules it
contains. It does not include source code for modules or files that typically
accompany the major components of the operating system on which the executable
file runs.

THIS SOFTWARE IS PROVIDED BY SLEEPYCAT SOFTWARE ``AS IS''
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
NON-INFRINGEMENT, ARE DISCLAIMED. IN NO EVENT SHALL
SLEEPYCAT SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Sleepycat software is available from
http://downloads.sleepycat.com/db-3.0.55.zip.

Portions of Netcool/SM Reporter are copyright (c) 1990, 1993, 1994, 1995. The
Regents of the University of California. All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list
of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

3. Neither the name of the University nor the names of its contributors may be
used to endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND
CONTRIBUTORS ``AS IS'' AND* ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Portions of Netcool/SM Reporter are copyright (c) 1995, 1996. The President and
Fellows of Harvard University. All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list
of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

3. Neither the name of the University nor the names of its contributors may be
used to endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY HARVARD AND ITS
CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
HARVARD OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Netcool/SM Reporter includes the Jetty Package which is copyright (c) 1998 Mort

Bay Consulting Pty. Ltd. (Australia) and others. Individual files in this package
may contain additional copyright notices. The javax.servlet packages are copyright
Sun Microsystems Inc.

1. The Standard Version of the Jetty package is available from
http://www.mortbay.com.

2. You may make and distribute verbatim copies of the source form of the Standard
Version of this Package without restriction, provided that you include this license
and all of the original copyright notices and associated disclaimers.

3. You may make and distribute verbatim copies of the compiled form of the
Standard Version of this Package without restriction, provided that you include
this license.

4. You may apply bug fixes, portability fixes and other modifications derived from
the Public Domain or from the Copyright Holder. A Package modified in such a
way shall still be considered the Standard Version.

5. You may otherwise modify your copy of this Package in any way, provided that
you insert a prominent notice in each changed file stating how and when you
changed that file, and provided that you do at least ONE of the following:

a) Place your modifications in the Public Domain or otherwise make them Freely
Available, such as by posting said modifications to Usenet or an equivalent
medium, or placing the modifications on a major archive site such as ftp.uu.net, or
by allowing the Copyright Holder to include your modifications in the Standard
Version of the Package.

b) Use the modified Package only within your corporation or organization.

c) Rename any non-standard classes so the names do not conflict with standard
classes, which must also be provided, and provide a separate manual page for each
non-standard class that clearly documents how it differs from the Standard
Version.

d) Make other arrangements with the Copyright Holder.

6. You may distribute modifications or subsets of this Package in source code or
compiled form, provided that you do at least ONE of the following:

a) Distribute this license and all original copyright messages, together with
instructions (in the manual page or equivalent) on where to get the complete
Standard Version.

b) Accompany the distribution with the machine-readable source of the Package
with your modifications. The modified package must include this license and all
of the original copyright notices and associated disclaimers, together with
instructions on where to get the complete Standard Version.

c) Make other arrangements with the Copyright Holder.

7. You may charge a reasonable copying fee for any distribution of this Package.
You may charge any fee you choose for support of this Package. You may not
charge a fee for this Package itself. However, you may distribute this Package in
aggregate with other (possibly commercial) programs as part of a larger (possibly
commercial) software distribution provided that you meet the other distribution
requirements of this license.

8. Input to or the output produced from the programs of this Package do not
automatically fall under the copyright of this Package, but belong to whomever
generated them, and may be sold commercially, and may be aggregated with this
Package.

9. Any program subroutines supplied by you and linked into this Package shall not
be considered part of this Package.

10. The name of the Copyright Holder may not be used to endorse or promote
products derived from this software without specific prior written permission.

11. This license may change with each release of a Standard Version of the Package.
You may choose to use the license associated with version you are using or the
license of the latest Standard Version.

12. THIS PACKAGE IS PROVIDED “AS IS” AND WITHOUT ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT
LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE.

Netcool/SM Reporter includes FreeMarker, a tool that allows Java programs to use

http://downloads.sleepycat.com/db-3.0.55.zip

templates to generate HTML or other text output that contains dynamic content.
Copyright (C) 1998, 2002 Benjamin Geer. E-mail: beroul@users.sourceforge.net

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

Neither the name “Freemarker” nor any of the names of the project contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Copyright 2006 Micromuse. Portions of Netcool/WSM are licensed under the
Apache License, Version 2.0 (the “License”); you may not use this file except in
compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0. Unless required by applicable law
or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied. See the License for the specific language
governing permissions and limitations under the License.

Micromuse acknowledges the use of Digital X11 in Netcool/Precision for IP
Networks. Copyright 1987, 1988 by Digital Equipment Corporation, Maynard,
Massachusetts, All Rights Reserved. DIGITAL DISCLAIMS ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL DIGITAL BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN
AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

Micromuse acknowledges the use of functionality within the Netcool/OMNIbus
Probe for Ping that was developed by Stanford University.

Netcool/SM Operations, Netcool/SM Configuration, and Netcool/OMNIbus
probes and monitors include software developed by the OpenSSL Project for use
in the OpenSSL Toolkit (http://www.openssl.org/. Copyright (c) 1998-2005 The
OpenSSL Project. All rights reserved. Redistribution and use in source and binary
forms, with or without modification, are permitted provided that the following
conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list
of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display
the following acknowledgment: “This product includes software developed by the
OpenSSL Project for use in the OpenSSL Toolkit. (http://www.openssl.org/)”

4. The names “OpenSSL Toolkit” and “OpenSSL Project” must not be used to
endorse or promote products derived from this software without prior written
permission. For written permission, please contact openssl-core@openssl.org.

5. Products derived from this software may not be called “OpenSSL” nor may
“OpenSSL” appear in their names without prior written permission of the
OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following
acknowledgment: “This product includes software developed by the OpenSSL
Project for use in the OpenSSL Toolkit (http://www.openssl.org/)”

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT “AS IS”
AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com). This product includes software written by Tim Hudson
(tjh@cryptsoft.com).

Original SSLeay License Copyright (C) 1995-1998 Eric Young
(eay@cryptsoft.com). All rights reserved.

This package is an SSL implementation written by Eric Young
(eay@cryptsoft.com). The implementation was written so as to conform with
Netscapes SSL. This library is free for commercial and non-commercial use as long
as the following conditions are adhered to. The following conditions apply to all
code found in this distribution, be it the RC4, RSA, lhash, DES, etc., code; not
just the SSL code. The SSL documentation included with this distribution is
covered by the same copyright terms except that the holder is Tim Hudson
(tjh@cryptsoft.com). Copyright remains Eric Young's, and as such any Copyright
notices in the code are not to be removed. If this package is used in a product, Eric
Young should be given attribution as the author of the parts of the library used.
This can be in the form of a textual message at program startup or in
documentation (online or textual) provided with the package. Redistribution and
use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display
the following acknowledgement: “This product includes cryptographic software
written by Eric Young (eay@cryptsoft.com)”.

4. If you include any Windows specific code (or a derivative thereof) from the apps
directory (application code) you must include an acknowledgement: “This
product includes software written by Tim Hudson (tjh@cryptsoft.com)”

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

The licence and distribution terms for any publicly available version or derivative
of this code cannot be changed, i.e. this code cannot simply be copied and put
under another distribution licence [including the GNU Public Licence.]

Micromuse acknowledges the use of software developed by ObjectPlanet. ©2003
ObjectPlanet, Inc., Ovre Slottsgate, 0157 Oslo, Norway.

Micromuse acknowledges the use of Expat in Netcool/ASM. Copyright 1998,
1999, 2000 Thai Open Source Software Center Ltd. and Clark Cooper. Copyright
2001, 2002 Expat maintainers. THE EXPAT SOFTWARE IS PROVIDED
HEREUNDER “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS OF THE EXPAT SOFTWARE BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE EXPAT SOFTWARE OR
THE USE OR OTHER DEALINGS IN THE SOFTWARE. Expat explicitly
grants its permission to any person obtaining a copy of any Expat software and
associated documentation files (the “Expat Software”) to deal in the Expat
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Expat
Software. Expat's permission is subject to the following conditions: The above
copyright notice and this permission notice shall be included in all copies or
substantial portions of the Expat Software. Except as set forth hereunder, all
software provided by Micromuse hereunder is subject to the applicable license
agreement.

Micromuse acknowledges that Netcool Security Manager includes Hypersonic
SQL. Copyright (c) 2001-2002, The HSQL Development Group. All rights
reserved.

JABBER® is a registered trademark and its use is granted under a sublicense from
the Jabber Software Foundation.

Micromuse acknowledges the use of MySQL in Netcool/Precision for IP
Networks and in Netcool/Precision for Transmission Networks. Copyright ©
1995, 1996 TcX AB & Monty Program KB & Detron.

Micromuse acknowledges the use of Cryptix in Netcool/Precision IP. Copyright
(c) 1995-2004 The Cryptix Foundation Limited. All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

 1. Redistributions of source code must retain the copyright notice, this list of
conditions and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE CRYPTIX FOUNDATION
LIMITED AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
CRYPTIX FOUNDATION LIMITED OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Micromuse acknowledges the use of PCRE in Netcool/Precision. Copyright
©1997-2005 University of Cambridge. All rights reserved. Redistribution and use
in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

 1. Redistributions of source code must retain the above copyright notice, this list
of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

 3. Neither the name of the University of Cambridge nor the name of Google Inc.
nor the names of their contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

Micromuse acknowledges the use of Net-SNMP in Netcool/ISM and
Netcool/OMNIbus probes & monitors.

Part 1: CMU/UCD copyright notice: (BSD like) Copyright 1989, 1991, 1992 by
Carnegie Mellon University Derivative Work - 1996, 1998-2000. Copyright
1996, 1998-2000 The Regents of the University of California. All Rights
Reserved. Permission to use, copy, modify and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appears in all copies and that both that copyright notice
and this permission notice appear in supporting documentation, and that the
name of CMU and The Regents of the University of California not be used in
advertising or publicity pertaining to distribution of the software without specific
written permission.

CMU AND THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL CMU OR THE REGENTS OF THE
UNIVERSITY OF CALIFORNIA BE LIABLE FOR ANY SPECIAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM THE LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

Part 2: Networks Associates Technology, Inc. copyright notice (BSD) Copyright
(c) 2001-2003, Networks Associates Technology, Inc. All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

- Neither the name of the Networks Associates Technology, Inc. nor the names of
its contributors may be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Part 3: Cambridge Broadband Ltd. copyright notice (BSD) Portions of this code
are copyright (c) 2001-2003, Cambridge Broadband Ltd. All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

- The name of Cambridge Broadband Ltd. may not be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Part 4: Sun Microsystems, Inc. copyright notice (BSD) Copyright © 2003 Sun
Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, USA.
All rights reserved. Use is subject to license terms below. This distribution may
include materials developed by third parties. Sun, Sun Microsystems, the Sun logo
and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. in
the U.S. and other countries. Redistribution and use in source and binary forms,
with or without modification, are permitted provided that the following
conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

- Neither the name of the Sun Microsystems, Inc. nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF DVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Part 5: Sparta, Inc. copyright notice (BSD) Copyright (c) 2003-2004, Sparta, Inc.
All rights reserved. Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the following conditions are
met:

- Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

 - Neither the name of Sparta, Inc. nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Part 6: Cisco/BUPTNIC copyright notice (BSD) Copyright (c) 2004, Cisco, Inc.
and Information Network, Center of Beijing University of Posts and
Telecommunications. All rights reserved. Redistribution and use in source and
binary forms, with or without modification, are permitted provided that the
following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

- Neither the name of Cisco, Inc., Beijing University of Posts and
Telecommunications, nor the names of their contributors may be used to endorse
or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

Micromuse acknowledges the use of STLport in Netcool Probes & Monitors.
Copyright 1999, 2000 Boris Fomitchev This material is provided “as is”, with
absolutely no warranty expressed or implied. Any use is at your own risk.
Permission to use or copy this software for any purpose is hereby granted without
fee, provided the above notices are retained on all copies. Permission to modify the
code and to distribute modified code is granted, provided the above notices are
retained, and a notice that the code was modified is included with the above
copyright notice.

The Licensee may distribute binaries compiled with STLport (whether original or
modified) without any royalties or restrictions.

The Licensee may distribute original or modified STLport sources, provided that:

The conditions indicated in the above permission notice are met;

The following copyright notices are retained when present, and conditions
provided in accompanying permission notices are met:

Copyright 1994 Hewlett-Packard Company,

Copyright 1996, 97 Silicon Graphics Computer Systems, Inc.

Copyright 1997 Moscow Center for SPARC Technology.

Permission to use, copy, modify, distribute and sell this software and its
documentation for any purpose is hereby granted without fee, provided that the
above copyright notice appear in all copies and that both that copyright notice and
this permission notice appear in supporting documentation. Hewlett-Packard
Company makes no representations about the suitability of this software for any
purpose. It is provided “as is” without express or implied warranty.

Permission to use, copy, modify, distribute and sell this software and its
documentation for any purpose is hereby granted without fee, provided that the
above copyright notice appear in all copies and that both that copyright notice and
this permission notice appear in supporting documentation. Silicon Graphics
makes no representations about the suitability of this software for any purpose. It
is provided “as is” without express or implied warranty.

Permission to use, copy, modify, distribute and sell this software and its
documentation for any purpose is hereby granted without fee, provided that the
above copyright notice appear in all copies and that both that copyright notice and
this permission notice appear in supporting documentation. Moscow Center for
SPARC Technology makes no representations about the suitability of this software
for any purpose. It is provided “as is” without express or implied warranty.

All other trademarks, registered trademarks and logos are the property of their
respective owners.

Micromuse Inc., 650 Townsend Street, San Francisco, USA CA 94103

www.micromuse.com

Document Version Number: 1.0

http://www.micromuse.com

Contents
Contents

Preface . 1

Audience. 2

About this Guide . 3

Associated Publications . 4

Netcool®/OMNIbus™ Installation and Deployment Guide . 4

Netcool®/OMNIbus™ User Guide . 4

Netcool®/OMNIbus™ Administration Guide . 4

Netcool®/OMNIbus™ Probe and Gateway Guide . 4

Netcool®/Precision IP™ Installation and Deployment Guide . 4

Netcool®/Precision IP™ Discovery Configuration Guide . 5

Netcool®/Precision IP™ Monitoring and RCA Guide. 5

Netcool®/Precision IP™ Desktop Guide . 5

Netcool®/Precision IP™ Topology Visualization Guide . 5

Netcool GUI Foundation™ Administration Guide. 5

Netcool Licensing™ Administration Guide . 5

Online Help . 5

Typographical Notation . 6

Note, Tip, and Warning Information . 7

Syntax and Example Subheadings . 8

Operating System Considerations . 9

Chapter 1: Overview of Monitoring and Root Cause Analysis 11

Introduction . 12
Netcool/Precision IP 3.6 Monitoring and RCA Guide i

Contents
The Polling Process. 13

Triggered Polling Agents . 14

Timed Polling Agents . 15

Visionary Polling Agent . 16

User-Defined Polling . 17

Poll Suspension . 17

The Event Enrichment Process . 18

The Root Cause Analysis Process . 19

Chapter 2: Network Polling . 21

Starting MONITOR and Polling Agents . 22

Prerequisites . 22

Starting MONITOR . 22

Starting Polling Agents. 23

Manually Suspending Polling . 25

Logging in to the OQL service provider . 26

Suspending Polling . 26

Resuming Polling. 27

Default Polling Process Descriptions . 29

Ping Polling . 29

SNMP Polling . 31

Trap Monitoring . 33

Syslog Polling. 35

MONITOR Database Reference . 37

The polldefCache Database Schema. 37

The class Database Schema . 38

The agentInfo Database Schema . 39

The polls Database Schema . 40

The config Database Schema . 41
Netcool/Precision IP 3.6 Monitoring and RCA Guideii

Contents
Polling Agent Database Reference . 42

The topoCache Database Schema . 43

The polldefCache database schema . 45

The triggers Database Schema for Syslog Polling . 46

The trapAgent Database Schema . 47

The triggers Database Schema for Trap Polling . 48

Chapter 3: MONITOR Configuration Tool . 51

Overview of the MONITOR Configuration Tool . 52

Poll Definitions . 52

Event Correlation Rules . 52

Customizing the AOCs Manually . 52

Starting the MONITOR Configuration Tool. 54

Configuring CLASS for the MONITOR Configuration Tool . 54

Configuring AUTH for the MONITOR Configuration Tool . 54

MONITOR Configuration Tool User Modes . 55

Starting the MONITOR Configuration Tool . 56

Navigating the MONITOR Configuration Tool. 58

Logging into the MONITOR Configuration Tool . 58

The Main View . 59

Using the Panner and Zoom Functions . 60

MONITOR Configuration Tool Buttons . 60

Class Icons . 61

Modifying the Instantiate Rule for a Class . 64

Filter Builder Modes of Operation. 65

Constructing Complex Rules . 66

The Filter Condition Editor. 66

Editing Menus in the Precision Desktop. 68

Managing Policies . 70

Selecting and Configuring Polling Policies. 71
Netcool/Precision IP 3.6 Monitoring and RCA Guide iii

Contents
Editing Poll Definitions . 72

Editing a Poll Definition . 73

Planning your Classes. 87

Chapter 4: Stitchers Used for Polling . 89

Introduction to Stitchers . 90

Monitoring Stitchers. 91

Poll Definition Attributes. 91

Precompiled Stitchers. 91

Text-Based Stitchers. 99

Stitcher Rules . 104

Stitcher Rules for MONITOR and DISCO. 104

Stitcher Rules for Polling Agents . 104

Creating and Editing Stitchers . 116

Stitcher Scope . 116

Stitcher Structure . 118

Poll Definitions and Stitchers. 120

Example Poll Definition and Stitcher . 122

Poll description . 122

Poll definition . 122

Stitcher . 122

Chapter 5: The MONITOR Probe and Netcool/OMNIbus Probes 127

Overview of the MONITOR Probe . 128

Starting the MONITOR Probe . 129

Manually Starting the MONITOR Probe . 129

The Probe and the Monitoring Subsystem . 131

Configuring the MONITOR Probe . 132

Properties File . 132

Map File . 133

Rules File . 133
Netcool/Precision IP 3.6 Monitoring and RCA Guideiv

Contents
Chapter 6: The Event Gateway . 135

Introduction to the Event Gateway. 136

Operation of the Gateway . 137

Event Gateway Process. 137

Starting the Event Gateway . 140

Manually Starting the Event Gateway . 140

The Gateway Databases. 142

Logging into the Gateway Databases Using the OQL Service Provider . 142

Applying Configuration Changes to the Gateway . 142

The topoCache Database Schema . 142

The config Database Schema . 145

Sending Events to AMOS . 153

Example Insert . 153

Chapter 7: Root Cause Analysis . 155

Introduction to Root Cause Analysis . 156

Architecture of Root Cause Analysis . 157

Mechanism of Root Cause Analysis . 158

Examples of Root Cause Analysis. 158

Starting AMOS . 166

Prerequisites for Starting AMOS . 166

Manually Starting AMOS . 167

Process Flow in AMOS . 167

AMOS Databases . 168

mojo.events Events Database Table . 168

topoCache.entityByName Entity Database Table . 170
Netcool/Precision IP 3.6 Monitoring and RCA Guide v

Contents
The Event Correlation Rules . 173

Inherited Rules. 173

Rule Chaining . 173

Event Rule Attributes . 174

rulename . 176

ruleset . 176

firing_condition . 176

execute_location. 178

execute_rule . 184

TopologicalAlertCorrelation Ruleset. 196

Suppression . 197

Wakeup . 199

Contact Information . 205
Netcool/Precision IP 3.6 Monitoring and RCA Guidevi

preface.fm August 8, 2006

Preface

This guide describes how to administer, and use the monitoring and root cause analysis components of
Netcool/Precision IP. The following chapters describe the functional areas and related concepts.

This preface contains the following sections:

• Audience on page 2

• About this Guide on page 3

• Associated Publications on page 4

• Typographical Notation on page 6

• Operating System Considerations on page 9
Netcool/Precision IP 3.6 Monitoring and RCA Guide 1

Preface
Audience

This guide is intended for both users and administrators, and provides detailed information about tools,
functions, and capabilities. In addition, it is designed to be used as a reference guide to assist you in designing
and configuring your environment. Much of the information contained in this document is also provided
on-line within the help system.

Netcool/Precision IP works in conjunction with Netcool®/OMNIbus™ and it is assumed that you
understand how Netcool/OMNIbus works. For more information on Netcool/OMNIbus, refer to the
publications described in Associated Publications on page 4.
Netcool/Precision IP 3.6 Monitoring and RCA Guide2

About this Guide
About this Guide

This book is organized as follows:

• Chapter 1: Overview of Monitoring and Root Cause Analysis on page 11 describes Netcool/Precision IP
network monitoring, the process of sending events to the Netcool/OMNIbus ObjectServer, and how
Netcool/Precision IP performs topology-based Route Cause Analysis (RCA) on events held in the
Netcool/OMNIbus ObjectServer.

• Chapter 2: Network Polling on page 21 describes how to use MONITOR and the polling agents to
poll your network. It describes how to start MONITOR and the polling agents, and describes how to
suspend polling.

• Chapter 3: MONITOR Configuration Tool on page 51 describes how to create, edit and browse the
Netcool/Precision IP active object classes (AOCs) using the MONITOR Configuration tool. The
AOC files include the polling definitions used by MONITOR.

• Chapter 4: Stitchers Used for Polling on page 89 describes the stitcher rules unique to the polling
agents, complete with an explanation of the required input and output for each.

• Chapter 5: The MONITOR Probe and Netcool/OMNIbus Probes on page 127 describes the
functionality of the MONITOR probe, its role in the monitoring process, and how to start and
configure it.

• Chapter 6: The Event Gateway on page 135 describes how to start and configure the
Netcool/Precision IP Event Gateway. It also includes descriptions of the gateway databases and
descriptions of the event correlation rules used in the RCA-specific AOC extensions.

• Chapter 7: Root Cause Analysis on page 155 describes AMOS, the root cause analysis component of
Netcool/Precision IP. It also describes the AMOS databases and the event correlation rules in the
AOC extensions.
Netcool/Precision IP 3.6 Monitoring and RCA Guide 3

Preface
Associated Publications

Netcool/Precision IP integrates with the Netcool/OMNIbus event management product. Netcool/Precision
IP is also deployed within the Netcool GUI Foundation server application, which runs Netcool/Precision
IP and other Netcool suite GUIs.

To efficiently administer Netcool/Precision IP, you must possess an understanding of the
Netcool/OMNIbus technology. This section provides a description of the documentation that accompanies
Netcool/OMNIbus, Netcool/Precision IP and the Netcool GUI Foundation.

Netcool®/OMNIbus™ Installation and Deployment Guide

This book is intended for Netcool administrators who need to install and deploy Netcool/OMNIbus. It
includes installation, upgrade, and licensing procedures. In addition, it contains information about
configuring security and component communications. It also includes examples of Netcool/OMNIbus
architectures and how to implement them.

Netcool®/OMNIbus™ User Guide

This book is intended for anyone who needs to use Netcool/OMNIbus desktop tools on UNIX or Windows
platforms. It provides an overview of Netcool/OMNIbus components, as well as a description of the
operator tasks related to event management using the desktop tools.

Netcool®/OMNIbus™ Administration Guide

This book is intended for system administrators who need to manage Netcool/OMNIbus. It describes how
to perform administrative tasks using the Netcool/OMNIbus Administrator GUI, command line tools, and
process control. It also contains descriptions and examples of ObjectServer SQL syntax and automations.

Netcool®/OMNIbus™ Probe and Gateway Guide

This book contains introductory and reference information about probes and gateways, including probe
rules file syntax and gateway commands. For more information about specific probes and gateways, refer to
the documentation available for each probe and gateway on the Micromuse Support Site.

Netcool®/Precision IP™ Installation and Deployment Guide

This book describes the automated installation process and minimum system requirements for
Netcool/Precision IP. This book also describes post-installation configuration and troubleshooting.
Netcool/Precision IP 3.6 Monitoring and RCA Guide4

Associated Publications
Netcool®/Precision IP™ Discovery Configuration Guide

This book describes how to configure and run discoveries. It contains reference information about the
Precision Server, which performs network discovery. The book describes the components that make up the
Precision Server, including helpers, agents, stitchers, and databases, and includes a detailed command line
option reference. In addition, this book provides comprehensive information about the stitcher and OQL
languages used within Netcool/Precision IP.

Netcool®/Precision IP™ Monitoring and RCA Guide

This book describes how to customize monitoring and event correlation, and how to write and adapt
monitoring stitchers. The book also describes the RCA Engine databases, and the additional components
installed as part of the integration with Netcool/OMNIbus.

Netcool®/Precision IP™ Desktop Guide

This book describes the operation of the Precision Desktop. The Precision Desktop is not available on
Windows.

Netcool®/Precision IP™ Topology Visualization Guide

This book describes how to visualize your topology using the Topoviz Hop View. The book also describes
how to partition your view of the network using the Network Views, and how to view device information
using the MIB Browser.

Netcool GUI Foundation™ Administration Guide

This book describes how to administer the Netcool GUI Foundation, the central server application that runs
web-based GUIs from different Netcool products. This guide describes how to configure the Netcool GUI
Foundation server, manage users, create and provision pages, and administer security permissions.

Netcool Licensing™ Administration Guide

This book is intended for Netcool administrators who need to install and administer Netcool Licensing. It
provides an overview of the generic Netcool Licensing component, as well as instructions for installing,
upgrading, and configuring one or more license servers to dispense licenses to Netcool Licensing clients.

Online Help

Netcool/Precision IP web-based GUIs contain context-sensitive online help with index and search
capabilities. Online documentation, HTML versions of the associated guides, are also available.
Netcool/Precision IP 3.6 Monitoring and RCA Guide 5

Preface
Typographical Notation

Table 1 shows the typographical notation and conventions used to describe commands, SQL syntax, and
graphical user interface (GUI) features. This notation is used throughout this book and other Netcool®
publications.

Table 1: Typographical Notation and Conventions (1 of 2)

Example Description

Monospace The following are described in a monospace font:

• Commands and command line options

• Screen representations

• Source code

• Object names

• Program names

• SQL syntax elements

• Filenames, paths, and directory names

Italicized monospace text indicates a variable that the user must populate. For example, -password
password.

Bold The following application characteristics are described in a bold font style:

• Buttons

Note: Text in the pop-up tooltips is used to name buttons with icons. These button names are
described in plain text.

• Frames

• Text fields

• Menu entries

A bold arrow symbol indicates a menu entry selection. For example, File→Save.

Italic The following are described in an italic font style:

• An application window name; for example, the Login window

• Information that the user must enter

• The introduction of a new term or definition

• Emphasized text

• References to external documents

[1] Code or command examples are occasionally prefixed with a line number in square brackets. For
example:

[1] First command...
[2] Second command...
[3] Third command...
Netcool/Precision IP 3.6 Monitoring and RCA Guide6

Typographical Notation
Many Netcool commands have one or more command line options that can be specified following a hyphen
(-).

Command line options can be string, integer, or BOOLEAN types:

• A string can contain alphanumeric characters. If the string has spaces in it, enclose it in quotation
(") marks.

• An integer must contain a positive whole number or zero (0).

• A BOOLEAN must be set to TRUE or FALSE.

SQL keywords are not case-sensitive, and may appear in uppercase, lowercase, or mixed case. Names of
ObjectServer objects and identifiers are case-sensitive.

Note, Tip, and Warning Information

The following types of information boxes are used in the documentation:

Note: Note is used for extra information about the feature or operation that is being described. Essentially,
this is for extra data that is important but not vital to the user.

{ a | b } In SQL syntax notation, curly brackets enclose two or more required alternative choices, separated by
vertical bars.

[] In SQL syntax notation, square brackets indicate an optional element or clause. Multiple elements or
clauses are separated by vertical bars.

| In SQL syntax notation, vertical bars separate two or more alternative syntax elements.

... In SQL syntax notation, ellipses indicate that the preceding element can be repeated. The repetition is
unlimited unless otherwise indicated.

,... In SQL syntax notation, ellipses preceded by a comma indicate that the preceding element can be
repeated, with each repeated element separated from the last by a comma. The repetition is unlimited
unless otherwise indicated.

a In SQL syntax notation, an underlined element indicates a default option.

() In SQL syntax notation, parentheses appearing within the statement syntax are part of the syntax and
should be typed as shown unless otherwise indicated.

Table 1: Typographical Notation and Conventions (2 of 2)

Example Description
Netcool/Precision IP 3.6 Monitoring and RCA Guide 7

Preface
Tip: Tip is used for additional information that might be useful for the user. For example, when describing
an installation process, there might be a shortcut that could be used instead of following the standard
installation instructions.

!!
Warning: Warning is used for highlighting vital instructions, cautions, or critical information. Pay close
attention to warnings, as they contain information that is vital to the successful use of our products.

Syntax and Example Subheadings

The following types of constrained subheading are used in the documentation:

Syntax

Syntax subheadings contain examples of ObjectServer SQL syntax commands and their usage. For example:

CREATE DATABASE database_name;

Example

Example subheadings describe typical or generic scenarios, or samples of code. For example:

[1] <body>
[2] <img src="ChartView?template=barchart&format=PNG
[3] &request=image&chart=quote&width=800&height=400" border="0" height="400"
[4] width="800" alt="Events by Severity"
[5] >
[6] </body>
Netcool/Precision IP 3.6 Monitoring and RCA Guide8

Operating System Considerations
Operating System Considerations

Unless otherwise specified, command files are located in the NCHOME/precision/bin directory,
where NCHOME is the environment variable that contains the path to the Netcool Suite home directory.

The precise formulation of this path depends on your platform:

• On UNIX platforms, replace NCHOME with $NCHOME. All command line formats and examples are
for the standard UNIX shell. UNIX is case-sensitive. You must type commands in the case shown in
the book.

• On Microsoft Windows platforms, replace NCHOME with %NCHOME% and the forward slash (/) with
a backward slash (\).
Netcool/Precision IP 3.6 Monitoring and RCA Guide 9

Preface
Netcool/Precision IP 3.6 Monitoring and RCA Guide10

1. Overview.fm August 8, 2006

Chapter 1: Overview of Monitoring and Root
Cause Analysis

This chapter describes Netcool/Precision IP network monitoring, the process of sending events to the
Netcool/OMNIbus ObjectServer, and how Netcool/Precision IP performs topology-based Root Cause
Analysis (RCA) on events held in the Netcool/OMNIbus ObjectServer.

This chapter contains the following sections:

• Introduction on page 12

• The Polling Process on page 13

• The Event Enrichment Process on page 18

• The Root Cause Analysis Process on page 19
Netcool/Precision IP 3.6 Monitoring and RCA Guide 11

Chapter 1: Overview of Monitoring and Root Cause Analysis
1.1 Introduction

Having discovered a network topology, Netcool/Precision IP can use it to monitor the status of the devices
in it, and determine which of them are experiencing problems. The Netcool/Precision IP component that
stores network topology is MODEL.

The Netcool/Precision IP component that controls network polling is MONITOR. MONITOR uses
polling agents to gather data. This data is passed as alerts to the ObjectServer through the MONITOR
probe. The Netcool/OMNIbus ObjectServer is the master repository for all event information across the
Netcool suite. Alerts from many other sources are stored in the ObjectServer.

Events are passed to the Netcool/Precision IP gateway. The gateway enriches some types of event with
information held in MODEL and updates the events in the ObjectServer. Some types of event are passed
through to AMOS.

The Netcool/Precision IP component that performs Root Cause Analysis (RCA) on events is AMOS. It
calculates the elements which are root cause events and suppresses events which are downstream (symptoms)
of this event. Figure 1 shows a high level view of the interactions between Netcool/OMNIbus and the
polling and RCA components of Netcool/Precision IP.

Figure 1: Overview of Netcool/Precision IP and Netcool/OMNIbus Integration

ObjectServer
Event
Gateway

Other
Probes

MONITOR

AMOS

MODEL

Polling
Agents

MONITOR
Probes
Netcool/Precision IP 3.6 Monitoring and RCA Guide12

The Polling Process
1.2 The Polling Process

The polling process is illustrated in Figure 2.

MODEL contains the discovered network topology. For every entity in MODEL the instantiate rules have
an Active Object Class (AOC) assigned. The AOC defines the type of polling required for each class of
device.

When MONITOR starts, it connects to the CLASS component and downloads the poll definitions for every
class (item 1 in Figure 2). Each poll definition specifies one of the following polling agent types:

• Timed

• Trap

• Syslog

• Visionary

The Trap and Syslog polling agents are collectively known as Triggered polling agents.

The polling agents perform monitoring, filtering and timing functions, and also launch and control
stitchers.

Figure 2: The Polling Process
Netcool/Precision IP 3.6 Monitoring and RCA Guide 13

Chapter 1: Overview of Monitoring and Root Cause Analysis
Poll definitions specify the stitcher to run. A variety of stitchers are supplied with Netcool/Precision IP. See
Chapter 4: Stitchers Used for Polling on page 89 for instructions on how to write text-based stitchers.

The poll definition can be configured to run separate types of polling by entering a value in the AgentKey
field. For example:

• PING

• SNMP

The poll definition also includes any scope filters which have been applied to the class.

For each poll type, MONITOR instructs the CTRL component to start the specified polling agent (item 2
in Figure 2). If the polling agent is already running, the poll type is added to existing poll types that the
polling agent is processing.

When the polling agent starts, and when it receives the new poll type, it sends a query to MONITOR to
obtain a list of polls that match the AgentKey field in the poll definition (item 3 in Figure 2).

The polling agent then queries MODEL to obtain a list of entities that match the poll type (item 4 in
Figure 2). The scope filter in the poll definition is used to filter the results from MODEL.

The polling agent polls the entities in the network. If the conditions of the poll are met, as specified by the
rules in the stitcher, the polling agent sends the results as an alert to the ObjectServer. All alerts pass through
the MONITOR probe (item 5 in Figure 2).

If Netcool/Visionary is installed on the network, the Visionary polling agent can be utilised to send SNMP
polling data to the Netcool/Visionary server through a broker (item 6 in Figure 2).

Note: The Netcool/Knowledge Library is a set of rules files written to a common standard. It enables
Netcool/OMNIbus probes to work seamlessly with Netcool/Precision IP without any need for
configuration. The Netcool/Knowledge Library is available with your Netcool/OMNIbus installation. It is
also available as a download on the Micromuse Support Site.

Triggered Polling Agents

Triggered polling agents do not actively poll the network. They monitor the network continuously, and are
activated by the receipt of either an SNMP trap or a Syslog message. The following types of triggered polling
agent are available:

• Trap

• Syslog

The polling agent monitors the network. When a trap or syslog message is detected it invokes the stitcher
specified in the poll definition to send the appropriate alert to the ObjectServer.
Netcool/Precision IP 3.6 Monitoring and RCA Guide14

The Polling Process
Note: By default, Netcool/Precision IP uses the Netcool/OMNIbus MT Trapd probes and Syslog probes
to poll the network. The Netcool/Precision IP Trap and Syslog polling agents are switched off, by default,
and in future releases these polling agents will be deprecated. Netcool/OMNIbus probes work seamlessly
with Netcool/Precision IP without any need for configuration if you have the Netcool/Knowledge Library
installed. The Netcool/Knowledge Library is available with your Netcool/OMNIbus installation. It is also
available as a download on the Micromuse Support Site.

Trap Polling Agent

When the Trap polling agent runs, it listens for the types of trap specified in the poll definition. If a trap is
detected, the stitcher sends the appropriate alert to the ObjectServer through the MONITOR probe.

To specify the Trap polling agent in a poll definition, enter the executable ncp_m_trapstitcher in
the AgentName field. The poll definition also specifies the stitcher that the polling agent needs to run.

The Trap polling agent listens on port 162 by default. This can be configured in the
trapAgent.configuration table which is defined in the
MonitorTrapStitcherAgent.cfg file.

Syslog Polling Agent

When the Syslog polling agent runs, it monitors the system log (Syslog) files listening for updates. If an
update occurs, the Syslog polling agent parses the updated sections, extracts the required information, and
processes it to see if an alert needs to be generated. Alerts are sent to the ObjectServer through the
MONITOR probe.

To specify the Syslog polling agent in a poll definition, enter the executable ncp_m_syslogstitcher
in the AgentName field. The poll definition also specifies the stitcher that the polling agent needs to run.

Timed Polling Agents

Timed polling agents poll the network at intervals specified within poll definitions. Based on the response,
the polling agent sends the appropriate alert to the ObjectServer through the MONITOR probe.

To specify the Timed polling agent in a poll definition, enter the executable ncp_m_timedstitcher
in the AgentName field.

There are two types of timed polling:

• Ping

• SNMP

These types are specified by the AgentKey field in the poll definition. The poll definition also specifies
the stitcher that the polling agent needs to run.
Netcool/Precision IP 3.6 Monitoring and RCA Guide 15

Chapter 1: Overview of Monitoring and Root Cause Analysis
Ping Polling

The ping process is the most common way to check that a device is available from another location in the
network. Ping polling checks that a device is still present, live, and contactable, by sending a packet of
information on a periodic basis to an IP address and waiting for a response. Ping polling uses ICMP
(Internet Control Message Protocol). On many network devices, pings are typically run as a low priority and
often time out. For this reason, Ping polling may be configured to send one or more pings to a device before
generating an event indicating loss of connectivity. The number of retries is configurable by the user.

SNMP Polling

SNMP polling is used to send SNMP requests, defined in various MIBs, to devices on the network that use
SNMP (Simple Network Management Protocol).

Visionary Polling Agent

The Visionary polling agent is a monitor agent that configures Netcool/Visionary, based on the topology
discovered by Netcool/Precision IP. The Visionary polling agent reacts to topology updates saved to
MODEL that are within the scope of the polling agent poll definition by forwarding them to
Netcool/Visionary. This polling agent is disabled by default.

The Visionary polling agent provides Netcool/Visionary 2.7 with the class-driven approach used by
Netcool/Precision IP. The scope of the Visionary polling agent is configured in the same manner as the
ncp_m_timedstitcher and can be further refined by the use of the scaling functionality contained in
Netcool/Visionary. See the Netcool/Visionary Administration Guide for further details.

Note: Netcool/Visionary 2.7 supports monitoring of SNMPv1 and SNMPv2 compatible devices only. The
Visionary polling agent does not forward details of SNMPv3 compatible devices to Netcool/Visionary.

Note: Netcool/Visionary requires a separate DSM instance to monitor devices outside of the network
topology discovered by Netcool/Precision IP. See the Netcool/Visionary Administration Guide for
instructions on how to create an additional DSM instance.

Note: If you stop the ncp_m_visionary process, Netcool/Visionary will continue monitoring the
network topology.
Netcool/Precision IP 3.6 Monitoring and RCA Guide16

The Polling Process
User-Defined Polling

You can create your own polling processes using one of the three types of polling agent. To create a new
polling process you must create one or more text based stitchers. A poll definition must be written to call
this new stitcher.

For information about writing stitchers and editing poll definitions, see Chapter 4: Stitchers Used for Polling
on page 89.

Poll Suspension

Polling is conducted on a class-by-class basis. All devices which belong to a particular class run the poll
definitions assigned to that class. A class can either explicitly name the poll definitions or it can inherit the
poll definitions from its parent class.

For example, the class Cisco contains two poll definitions and inherits one more. Every device which is
instantiated to the class Cisco runs these three polls.

You may want to suspend polling on individual devices without changing the instantiate rules of the AOCs.
It is possible to suspend polls on one or more devices by making inserts into the polls.suspended table
within MONITOR. For information on manual poll suspension, see Manually Suspending Polling on
page 25.
Netcool/Precision IP 3.6 Monitoring and RCA Guide 17

Chapter 1: Overview of Monitoring and Root Cause Analysis
1.3 The Event Enrichment Process

The gateway enriches events in the ObjectServer with network topology information stored in MODEL.
Event enrichment is also provided for specific event types which originate from the Netcool/Precision IP
polling agents, Netcool/OMNIbus probes and other Netcool products.

Events from the Netcool/Precision IP polling agents are sent to the ObjectServer through the MONITOR
probe. The gateway sends these events from the Netcool/OMNIbus ObjectServer to the Netcool/Precision
IP component AMOS where root cause analysis is performed.

The gateway also sends root cause events from AMOS to the ObjectServer, and updates existing events
which have been identified as symptoms of a root cause event.

For more information on the gateway, see Chapter 6: The Event Gateway on page 135.
Netcool/Precision IP 3.6 Monitoring and RCA Guide18

The Root Cause Analysis Process
1.4 The Root Cause Analysis Process

The Netcool/Precision IP component AMOS performs root cause analysis (RCA). It does this by correlating
events with each other, and with the network topology, to determine which ones are the root causes, and
which are symptoms that disappear when the root cause is resolved.

Because AMOS knows how devices in the network are connected, it can use a technique called downstream
suppression to determine which devices are temporarily inaccessible due to other network failures. It
suppresses the events on these temporarily inaccessible devices. Suppressed events are still visible to the user,
however, they are marked as symptomatic, rather than root cause.

The way in which AMOS performs RCA is controlled by rules that are specified in the AOCs (Active Object
Classes). These rules, known as the event correlation rules, allow a high degree of customization of how
AMOS works, enabling it to be tailored to specific customer requirements.

For information on correlation rules, see Chapter 7: Root Cause Analysis on page 155.
Netcool/Precision IP 3.6 Monitoring and RCA Guide 19

Chapter 1: Overview of Monitoring and Root Cause Analysis
Netcool/Precision IP 3.6 Monitoring and RCA Guide20

2. Monitoring.fm August 8, 2006

Chapter 2: Network Polling

This chapter describes how to use MONITOR and the polling agents to poll your network. It describes how
to start MONITOR and the polling agents, both manually and automatically. It also describes how the
databases of MONITOR and the polling agents can be used to suspend polling on certain devices and
retrieve specific information about the polling process.

This chapter contains the following sections:

• Starting MONITOR and Polling Agents on page 22

• Manually Suspending Polling on page 25

• Default Polling Process Descriptions on page 29

• MONITOR Database Reference on page 37

• Polling Agent Database Reference on page 42
Netcool/Precision IP 3.6 Monitoring and RCA Guide 21

Chapter 2: Network Polling
2.1 Starting MONITOR and Polling Agents

This section describes the process of starting MONITOR and the polling agents.

Prerequisites

The following must be in place before MONITOR and the polling agents can be started:

• CLASS, the class loader component of the Precision Server, must be running, to ensure that
MONITOR can download the poll definitions and distribute them to the polling agents.

• DISCO, the network discovery component of the Precision Server, must have successfully completed
a discovery and sent it to MODEL.

• MODEL must be running in order to pass the network topology to the polling agents.

• CTRL must be running. MONITOR uses CTRL to start the polling agent executables.

• MONITOR probe must be running to transfer events to the ObjectServer.

Starting MONITOR

Micromuse recommends that MONITOR is started using the domain process controller CTRL. The use of
CTRL to automatically manage processes is described in the Netcool/Precision IP Discovery Configuration
Guide.

!!
Warning: If you are using Netcool/Precision IP with failover, you must start MONITOR using CTRL.
The CTRL process checks the status of the MONITOR component and uses this information to generate
the Health Check events used by the failover process. For more information on failover, see the
Netcool/Precision IP Installation and Deployment Guide.

Manually Starting MONITOR

On Microsoft Windows, Netcool/Precision IP components can be run as processes or as services.
Components run as processes are started from a command prompt in the same way as on UNIX platforms.
For more information on running components as services, see the Netcool/Precision IP Discovery
Configuration Guide.

Run the command ncp_monitor to manually start MONITOR.
Netcool/Precision IP 3.6 Monitoring and RCA Guide22

Starting MONITOR and Polling Agents
The command line options for ncp_monitor are:

ncp_monitor -domain DOMAIN_NAME -service SERVICE_NAME [-latency LATENCY] [-debug DEBUG]
[-backup] [-help] [-version]

The command line options are described in Table 2.

Starting Polling Agents

Micromuse recommends that the triggered and timed agents are started automatically by MONITOR,
using CTRL, as defined in the poll definitions.

Manually Starting Polling Agents

On Microsoft Windows, Netcool/Precision IP components can be run as processes or as services.
Components run as processes are started from a command prompt in the same way as on UNIX platforms.
For more information on running components as services, see the Netcool/Precision IP Discovery
Configuration Guide.

Table 2: Explanation of command line attributes available with MONITOR

Command Line Option Description

-domain DOMAIN_NAME The name of the domain under which MONITOR is running.

-service SERVICE_NAME The service to which events should be sent. This must be set to
Monitor2ObjServ to send events to the ObjectServer.

Setting this value to Events sends events directly to AMOS. Micromuse does
not recommend performing root cause analysis on alerts that have not been
processed by the Netcool/OMNIbus ObjectServer.

The service specified when starting MONITOR is automatically passed to any
polling agents that MONITOR starts.

-latency LATENCY The maximum time in milliseconds (ms) that MONITOR waits to connect to
another Precision Server process via the messaging bus. This option is useful
for large and busy networks where the default settings can cause the process
to assume that there is a problem when in fact the communication delay is a
result of network traffic.

-debug DEBUG The level of debugging output. Possible values are 1-4, where 4 represents
the most detailed output.

-backup Configures MONITOR to operate in backup mode. For information on failover,
see the Netcool/Precision IP Installation and Deployment Guide.

-help Prints out a synopsis of all command line options for ncp_monitor, then
exits.

-version Prints the version number of ncp_monitor, then exits.
Netcool/Precision IP 3.6 Monitoring and RCA Guide 23

Chapter 2: Network Polling
The polling agents can be started manually by running the polling agent executables:

• ncp_m_timedstitcher, controls ping and SNMP polling.

• ncp_m_visionary, controls Netcool/Precision IP integration with Netcool/Visionary.

• ncp_m_trapstitcher, controls trap monitoring.

• ncp_m_syslogstitcher, controls syslog monitoring.

The command line options for all agents are:

AGENT_NAME -key AGENT_TYPE -domain DOMAIN_NAME -service SERVICE_NAME [-debug DEBUG]
[-help] [-latency LATENCY] [-version]

Where AGENT_NAME is the polling agent executable. The command line options for the agents are
described in Table 3.

Table 3: Explanation of command line attributes for the Polling Agents

Command Line Option Description

-key AGENT_TYPE The key used to ensure that the correct type of polling is carried out, for
example, PING. This is the link between the AOC definition, the polling agents
and the stitchers. The key used must exactly match the key specified in the poll
definition which the polling agent is to use.

-debug DEBUG The level of debugging output. Possible values are 1-4, where 4 represents
the most detailed output.

-domain DOMAIN_NAME The name of the domain under which MONITOR is running.

-service SERVICE_NAME The service to which events should be sent. This must be set to
Monitor2ObjServ to send events to the ObjectServer.

Setting this value to Events sends events directly to AMOS. Micromuse no
longer supports root cause analysis from alerts that have not been processed
by the Netcool/OMNIbus ObjectServer.

The service specified when starting MONITOR is automatically passed to any
polling agents that monitor starts.

-help Prints out a synopsis of all command line options for the polling agent then
exits.

-latency LATENCY The maximum time in milliseconds (ms) that MONITOR waits to connect to
another Precision Server process via the messaging bus. This option is useful
for large and busy networks where the default settings can cause the process
to assume that there is a problem when in fact the communication delay is a
result of network traffic.

-version Prints the version number of the polling agent then exits.
Netcool/Precision IP 3.6 Monitoring and RCA Guide24

Manually Suspending Polling
2.2 Manually Suspending Polling

You can suspend polling on individual devices using the database table polls.suspended, which is
defined in the NCHOME/etc/precision/MonitorSchema.cfg file.

Note: NCHOME is the environment variable that contains the path to the Netcool Suite home directory. For
information on how this environment variable varies with platform, see Operating System Considerations on
page 9.

The columns of the polls.suspended table are described in Table 4.

You must ensure that the EntityName and ClassName that you specify in the polls.suspended
table entry exactly match the EntityName and ClassName in the MODEL
master.entityByName database table entry for the entity.

The PollName that you specify in the polls.suspended table entry must match the name of the poll
that you are suspending. Polls are named in the AOC files in which they are defined.

If the attributes do not match, the suspension has no effect.

Table 4: The polls.suspended table

Column name Constraints Data type Description

EntityName Not NULL

PRIMARY KEY

Text The name of the entity for which to suspend the specified poll.
This should correspond to the EntityName of the entity as
defined in the MODEL topology database.

ClassName Not NULL Text The ClassName of the MODEL entity as defined in the MODEL
topology database.

PollName Not NULL

PRIMARY KEY

Text The name of the poll to suspend. This must correspond to the
PollName attribute of the poll as defined in the poll definitions of
the relevant AOC file.

AuditData Object type vblist An optional free-form field into which any audit data, such as the
time of, and user responsible for, a particular poll suspension
may be stored.

ActionType Int type actions This column is for internal use only, and you should not insert
values into this field.
Netcool/Precision IP 3.6 Monitoring and RCA Guide 25

Chapter 2: Network Polling
Logging in to the OQL service provider

In order to suspend or resume polls, log in to the service Monitor using the OQL (Object Query
Language) service provider using the command:

ncp_oql -domain DOMAIN_NAME -service Monitor -username USERNAME

Where USERNAME is the user name and DOMAIN_NAME is the domain name to connect to. For more
information on using the OQL service provider, see the Netcool/Precision IP Discovery Configuration Guide.
You need to log into the OQL service provider in order to access the polls.suspended table.

Suspending Polling

After you have logged in to the OQL service provider, you can suspend a poll on a device by making an
insert into the polls.suspended table. The following example suspends a default ping poll on
router01.

1.> insert into polls.suspended
2.> (EntityName, ClassName, PollName)
3.> values
4.> ("router01", "Cisco72xx", "defaultPing");
5.> send;

The poll is immediately suspended. If this poll is currently in the process of executing when it is suspended,
it completes that execution before the suspension becomes effective. It is therefore possible for a poll to
generate an event after it has been suspended. This is most likely to happen with polls which have a long
timeout period, for example, ping polls which wait for several seconds to receive a response.

The polls.suspended table is persistent and the information it contains is still present if
ncp_monitor or Netcool/Precision IP is restarted. To resume a poll you must delete the relevant entry
in the polls.suspended table.

Entering Audit Data

You can enter audit data as name-value pairs in the AuditData field. The AuditData field can be
empty, can contain a single name-value pair, or can contain multiple, comma separated, name-value pairs.
For example:

1.> insert into polls.suspended
2.> (EntityName, ClassName, PollName, AuditData)
3.> values
4.> ("router01", "Cisco72xx", "defaultPing", { user = "admin", date = "20/01/2003", time
= "11:56:27",reason = "Disable poll to allow routine maintenance."});
5.> send;
Netcool/Precision IP 3.6 Monitoring and RCA Guide26

Manually Suspending Polling
Suspending All Polling

To suspend all polls on a specific device, insert an asterisk "*", in the PollName field. For example, to
suspend all polls on router01, log in to the OQL service provider and enter:

1.> insert into polls.suspended
2.> (EntityName, ClassName, PollName)
3.> values
4.> ("router01", "Cisco72xx", "*");
5.> send;

To suspend all polls on all devices, insert an asterisk in each field. For example, to suspend all polls enter:

1.> insert into polls.suspended
2.> (EntityName, ClassName, PollName)
3.> values
4.> ("*", "*", "*");
5.> send;

Resuming Polling

To resume a poll which has been suspended, delete the relevant entry from the polls.suspended table.
For example, to resume a default ping poll on router01, log in to the OQL service provider and enter:

1.> delete from polls.suspended where
2.> EntityName = "router01"
3.> and PollName = "defaultPing";
4.> send;

The poll is immediately resumed, and executes again at the appropriate time as defined in the poll
definitions.

Resuming All Polling on a Specific Device

If you have suspended all polls on a specific device using the "*" wildcard, you can resume normal polling
on that device by deleting this entry in the polls.suspended table. For example, to resume normal
polling on the device router01, log in to the OQL service provider and enter:

1.> delete from polls.suspended where
2.> EntityName = "router01"
3.> and PollName = "*";
4.> send;

Note: Deleting a wildcard entry in the polls.suspended table leaves any other entries for that device
unchanged. Specifically, if you have suspended any polls for that device using inserts which explicitly
identify polls by name, these suspensions remain in effect.
Netcool/Precision IP 3.6 Monitoring and RCA Guide 27

Chapter 2: Network Polling
If you wish to resume all polling on the device router01, do not specify the PollName value. For example,
to resume all polling on the device router01, log in to the OQL service provider and enter:

|1.> delete from polls.suspended where
|2.> EntityName = "router01"
|3.> send;
Netcool/Precision IP 3.6 Monitoring and RCA Guide28

Default Polling Process Descriptions
2.3 Default Polling Process Descriptions

This section describes the default polling process. The process flow descriptions are intended for
administrators of Netcool/Precision IP who may need to customize the operation of these polling agents.

You can configure the polling process by creating and applying new stitchers. You should understand all
aspects of Precision Server and RCA Engine functionality, and have an in-depth knowledge of the polling
process, before attempting to write your own stitchers. For detailed information on the functionality of the
stitchers, see Chapter 4: Stitchers Used for Polling on page 89.

For a basic description of each polling agent, see The Polling Process on page 13.

Ping Polling

Ping polling is used to ensure that a device is still present, live and contactable in the network by periodically
sending a packet of information to an IP address and waiting for a response.

The possible results of a poll are:

• Success

• Fail

• Restore

The results are described in the following sections.

Poll Success

A device in the network continues to be contactable. The agent process is:

1. The agent executable ncp_m_timedstitcher runs based on the Frequency attribute of the
poll definition.

2. The executable starts the stitcher specified in the poll definition, which sends a ping to the
appropriate network device.

3. The device sends a response within the TimeOut period specified in the poll definition.

4. The stitcher checks the internal test flag to determine if not the device was reachable the last time it
was polled. Since it was (the flag was set to pass), a restore event is not generated.

5. The poll restarts when next initiated by the Frequency attribute.
Netcool/Precision IP 3.6 Monitoring and RCA Guide 29

Chapter 2: Network Polling
Poll Failure

A device is no longer contactable. The agent process is:

1. The agent executable ncp_m_timedstitcher runs based on the Frequency attribute of the
poll definition.

Note: You must enter a time period in the Frequency attribute of the poll definition.

2. The executable starts the stitcher specified in the poll definition, which sends a ping to the
appropriate network device.

3. The device fails to respond within the TimeOut period specified in the poll definition.

4. The stitcher generates an event and sends it to the MONITOR probe with an appropriate name
assigned to the EventName column.

5. The internal test flag is set to fail to acknowledge the fact that the device could not be contacted.

6. The poll restarts when next initiated by the Frequency attribute.

The column names and values of the ping fail event depend on the poll definitions and the configuration of
the stitcher used to perform the ping poll. A typical example is given below in Table 5.

Table 5: The Column Names of an Example Ping Fail Event

Column Name Example Value

EventId 1227

EntityName Router4500.1234

ClassName Cisco

Description Ping fail for 192.168.34.56

EventName pingFail

RuleSet pingFailToCorrelatedRootCause

EventType Event

Severity Major

AssignedTo Joe

Acknowledged Unacknowledged

AgentAddress 192.168.123.146

EventGroupID 1227
Netcool/Precision IP 3.6 Monitoring and RCA Guide30

Default Polling Process Descriptions
Poll Restore

A device that was previously unreachable (on the last ping attempt), becomes reachable again. The agent
process is:

1. The agent executable ncp_m_timedstitcher runs based on the Frequency attribute of the
poll definition.

2. The executable starts the stitcher specified in the poll definition, which sends a ping to the
appropriate network device.

3. The device sends a response within the TimeOut period specified in the poll definition.

4. The stitcher checks the internal test flag to determine if not the device was reachable the last time it
was polled. Since it was not (the flag was set to fail).

5. The stitcher generates a restore condition. It sends an event to the MONITOR probe indicating the
device is now reachable and resets the internal test flag to pass.

6. The poll restarts when next initiated by the Frequency attribute.

SNMP Polling

SNMP polling is used to acquire MIB-related information from particular network devices. It is associated
with the SNMP protocol and the SNMP polling agent. The possible outcomes from an SNMP poll are:

• Success

• Fail

These polling outcomes are described in the following sections. The concept of delta polling, a more
advanced type of SNMP polling, is described in Delta Polling on page 33.

Some stitchers also support restore events, using an internal test flag in a similar way to the Ping process flow.

Poll Success

An SNMP poll is successful if the device is contactable within a timeout period. However, if the event
generation conditions are not met, the associated stitcher does not generate an alert.

Several event generation conditions can be specified in the stitcher, which may be simple or complex, and
may even be logically dependant on each other.
Netcool/Precision IP 3.6 Monitoring and RCA Guide 31

Chapter 2: Network Polling
For example, the following process describes a simple event generation condition that checks whether a
contactable device has restarted in the last two minutes. The agent process is:

1. The agent executable ncp_m_timedstitcher runs an SNMP poll every two minutes, based on
the setting Frequency=120 in the poll definition.

2. The executable starts the stitcher specified in the poll definition.

3. The stitcher contacts the device, within the TimeOut period, and retrieves the MIB variable
sysUpTime. This MIB variable provides the time in hundredths of a second since the device was
last initialized. The variable can be specified in the Threshold attribute of the poll definition or
written into the stitcher.

4. The first time a device is polled, the value of sysUpTime is retrieved and stored. In this case the
stitcher does not check the event generation condition.

5. On the next poll, the agent compares the sysUpTime MIB variable values from the last two polls.

If the device has been continually running, the difference between the two values is greater than zero
and no event is generated.

If the device has restarted, the difference is less than zero and the stitcher sends an event to the
MONITOR probe to indicate the device has restarted.

6. The poll restarts when next initiated by the Frequency attribute.

Poll Failure

The SNMP polling fails when the device is unreachable within timeout period. The event generation
condition is not evaluated.

For example, the following process describes a SNMP poll to a device that is no longer contactable. The
agent process is:

1. The agent executable ncp_m_timedstitcher runs an SNMP poll based on the Frequency
attribute of the poll definition.

2. The stitcher attempts to retrieve the required MIB variable from the network device. The device is
not contactable and fails to respond within the TimeOut period.

3. The stitcher sends an event to the MONITOR probe with an appropriate name assigned in the
EventName column name. The event generation condition is not evaluated.

4. The poll restarts when next initiated by the Frequency attribute.
Netcool/Precision IP 3.6 Monitoring and RCA Guide32

Default Polling Process Descriptions
Delta Polling

A delta poll generates events based on the differences between the previous and current values received by
one or more MIB variables. The example in Poll Success on page 29, that compares values of the MIB variable
sysUpTime, is an example of delta polling.

Stitcher rules which use delta polling functionality are available in some stitchers and for construction of
user-defined stitchers. For more information on the stitcher rules, see Chapter 4: Stitchers Used for Polling
on page 89.

The process flow for delta polling is the same as for other SNMP polling, but the event generation condition
is likely to be more complicated.

Polling Multiple MIB Variables

SNMP polling can also be used to retrieve several SNMP variables at once from a device.

Trap Monitoring

Traps are asynchronous notifications that enable a network entity to report a condition to a management
station. Trap agents are reactive and have a much simpler mechanism than the timed polling agents. Trap
monitoring is defined using the poll definition AgentControl and StitcherInfo attributes. The
AgentControl attribute specifies which traps should be handled and which should be discarded.

The traps that are commonly used with the SNMP protocol are listed in Table 6.

Table 6: Trap Type Values and Descriptions (1 of 2)

Trap Type Trap Name Description

0 coldStart Signifies that the sending device is reinitializing itself and may have
been altered.

1 warmStart Signifies that the sending device is reinitializing itself and has not been
altered.

2 linkDown Signifies that the sending device recognizes the failure of a
communication link.

3 linkUp Generated when a recognized communication link comes up or gets
restored.

4 authenticationFailure Generated when the sending device receives a message that is not
properly authenticated, for example, an incorrect login attempt.
Netcool/Precision IP 3.6 Monitoring and RCA Guide 33

Chapter 2: Network Polling
A trap that is defined in a MIB in the NCHOME/precision/mibs directory is called a known trap. A
trap that is not defined in a MIB is called an unknown trap.

Known Trap

The following steps describes the polling agent process when a known trap is detected:

1. The agent executable ncp_m_trapstitcher is already running, having been initiated at startup.
It listens on the default port 162 for incoming traps.

2. Using the TrapType value in the trap PDU (Packet Data Unit) the agent attempts to resolve the
trapname from the MIBs in the NCHOME/precision/mibs directory.

If TrapType=6 the agent attempts to resolve the trapname using the Enterprise value and
the SpecificTrapType value.

If the trapname cannot be resolved the trap is unknown. For information on the agent process for
an unknown trap, see Unknown Trap on page 35.

3. If the trapname can be resolved, the agent identifies which device the trap originated from using
the IP address contained in the trap. The agent then checks the network topology to find out the class
of the device.

4. The class determines which poll definitions are loaded. This is done for every trap. In each poll
definition the trap is managed if any of the following conditions are met:

– The trap is listed in the KnownTraps section of the AgentControl field.

– The value ALL is listed in the KnownTraps section of the AgentControl field.

– The value Unhandled is listed in the KnownTraps section of the AgentControl field
and the trap is not listed in the KnownTraps section of any other poll definition for this class.

The agent then checks that the trap does not appear in the OmitTraps field.

5. If the poll definition conditions are met, the agent executable starts the stitcher. The stitcher
constructs an event describing the trap and where it came from.

6. The agent waits for another trap to be received.

5 egpNeighborloss Signifies that an Exterior Gateway Protocol (EGP) neighbor, for whom
the sending device was an EGP peer, has been marked down and the
relationship no longer exists.

6 Enterprise Specific Trap Name Signifies that the sending device recognizes some enterprise-specific
event has occurred. This value is used for any trap that does not match
trap type values 1 to 5.

Table 6: Trap Type Values and Descriptions (2 of 2)

Trap Type Trap Name Description
Netcool/Precision IP 3.6 Monitoring and RCA Guide34

Default Polling Process Descriptions
Unknown Trap

The following steps describes the polling agent process when an unknown trap is detected:

1. The agent executable ncp_m_trapstitcher is already running, having been initiated at startup.
It listens on the default port 162 for incoming traps.

2. The agent attempts to resolve the trapname from the MIBs in the
NCHOME/precision/mibs directory. If the trapname cannot be resolved the trap is
unknown.

3. The agent checks the unknown trap against the attribute UnknownTrapHandling in each poll
definition.

– If UnknownTrapHandling is set to true, the agent starts the stitcher and sets
trapname to unknown trap. The stitcher constructs and sends an event.

– If UnknownTrapHandling is set to false, the agent does not start the stitcher.

4. The agent waits for another trap to be received.

Syslog Polling

Syslog polling parses syslog files and analyzes the results to detect new messages. Syslogs allow a device to
deliver messages to another device. The syslog message format commonly includes values for date, time, and
the service or process that generated the message. Messages can indicate the occurrence many different
events, for example, communication links going up or down, or failed root login attempts.

Syslog polling, like trap monitoring, is reactive, and it has an even simpler process flow. It does not have fail,
restore or success outcomes as such. The possible outcomes from an Syslog poll are:

• Message found

• No message found

These polling outcomes are described in the following sections.
Netcool/Precision IP 3.6 Monitoring and RCA Guide 35

Chapter 2: Network Polling
Syslog Message Found

This section describes the polling agent process when the agent detects a message and the message matches
the values in the AgentControl field. The poll definition Filename attribute specifies the location of
the file containing the syslog messages. The default value is Filename=["/var/adm/messages"].
The agent process is:

1. The agent executable ncp_m_syslogstitcher parses the file looking for messages.

2. The agent finds the message and checks its fields against those specified in the poll definition
AgentControl field.

3. If one or more of the fields match, the agent starts the stitcher and passes the message to it.

4. The stitcher processes the message, extracts the information in the relevant fields and generates an
event from it.

5. The agent continues to monitor the files.

No Syslog Message Found

This section describes the polling agent process when the agent does not detect a message or the message
does not match the values in the AgentControl field. The agent process is:

1. The agent executable ncp_m_syslogstitcher parses the file looking for messages.

2. There are no new messages there, or the messages do not match the values specified in
AgentControl. The agent does not start a stitcher.

3. The agent continues to monitor the files.
Netcool/Precision IP 3.6 Monitoring and RCA Guide36

MONITOR Database Reference
2.4 MONITOR Database Reference

This section describes the database tables used by MONITOR (the ncp_monitor executable). The poll
definitions, AOC definitions and agent status are stored in the MONITOR databases.

Note: This section is intended for advanced users who want to interrogate the Netcool/Precision IP
MONITOR databases.

The polldefCache Database Schema

The summary information for the polldefCache database schema is shown in Table 7.

The polldefs Table

The polldef table holds the poll definitions that are loaded from CLASS. The columns are described in
Table 8.

Table 7: polldefCache Database Summary

Database name polldefCache

Defined in NCHOME/etc/precision/MonitorSchema.cfg

Fully qualified database table name polldefCache.polldefs

Table 8: polldefCache.polldefs Table Descriptions (1 of 2)

Column Name Constraints Data Type Description

PollName PRIMARY KEY

NOT NULL

Text The unique name of the poll definition.

PollStatus NOT NULL Integer The poll status. Possible values are:

• 1 - poll is active

• 0 - poll is inactive

AgentName NOT NULL Text The name of the polling agent used to conduct this
poll.

AgentKey Text The agent key, which links the AOC definition with the
polling agent executable and the stitchers it employs.

The agent key distinguishes between polls that use
the same agent, for example, the timed stitcher agent
which runs both Ping and SNMP polls. Using the agent
key ensures that two separate instances of the
executable ncp_m_timedstitcher are run (one
for each type of poll).
Netcool/Precision IP 3.6 Monitoring and RCA Guide 37

Chapter 2: Network Polling
The class Database Schema

The summary information for the class database schema is shown in Table 9.

HostName Text The host machine from which polling is being
conducted.

Frequency Integer How often the poll is conducted.

Threshold Text A threshold condition for the poll.

Scope Text A filter that constrains poll execution to certain
devices, classes or instances if necessary.

ClassName PRIMARY KEY

NOT NULL

Text The name of the class within which this poll is defined.

StitcherName NOT NULL Text The name of the stitcher that the agent calls.

AgentControl Externally defined vblist
data type

Object A list of agent control information, for example, to
define how to handle trap and syslog monitoring.

StitcherInfo Externally defined vblist
data type

Object A list of stitcher Information.

ActionType NOT NULL Integer The type of action the event represents. Possible
values are:

• 0 - Create

• 1 - Change

• 2 - Delete

Table 8: polldefCache.polldefs Table Descriptions (2 of 2)

Column Name Constraints Data Type Description

Table 9: class Database Summary

Database name class

Defined in NCHOME/etc/precision/MonitorSchema.cfg

Fully qualified database table name class.activeClasses
Netcool/Precision IP 3.6 Monitoring and RCA Guide38

MONITOR Database Reference
The activeClasses Table

The activeClasses table holds a copy of the full definition of every AOC active in Netcool/Precision
IP. The columns are described in Table 10.

The agentInfo Database Schema

The summary information for the agentInfo database schema is shown in Table 11.

Table 10: class.activeClasses Table Descriptions

Column Name Constraints Data Type Description

ClassName PRIMARY KEY

NOT NULL

UNIQUE

Text Name of the AOC.

SuperClass NOT NULL Text Name of the parent AOC.

Dictionary List of text List of data dictionaries used by the
AOC.

Instantiate NOT NULL Text Rules for instantiating the AOC.

Extensions Externally defined extension data
type

Object of extension
data type

List of extensions contained within
the AOC.

VisualIcon NOT NULL Text The icon associated with this AOC.

MenuRules Externally defined menurule
data type

List of object data
types (the object is of
the menurule data
type)

A list of menu rules associated with
the AOC.

Menu Externally defined menu data type List of object data
types (object is of the
menu data type)

List of menu options available in
the GUI for this AOC.

ActionType Externally defined actions data
type

Integer The type of action the event
represents. Possible values are:

• 0 - Create

• 1 - Change

• 2 - Delete

Table 11: agentInfo Database Summary

Database name agentInfo

Defined in NCHOME/etc/precision/MonitorSchema.cfg

Fully qualified database table name agentInfo.master
Netcool/Precision IP 3.6 Monitoring and RCA Guide 39

Chapter 2: Network Polling
The master Table

The agentInfo.master table holds information about the active polling agents so that MONITOR
can track their status and also launch them as appropriate by sending inserts to the services.inTray
table of CTRL. The columns are described in Table 12.

The polls Database Schema

Table 13 shows the summary information for the polls database schema.

The suspended Table

The polls.suspended table is used to suspend specified polls on specific entities. The columns are
described in Table 14.

Table 12: agentInfo.master Table Description

Column Name Constraints Data Type Description

AgentName NOT NULL Text The name of the polling agent.

AgentKey Text The agent key.

HostName Text The name of the host where the polling agent
is running.

Table 13: polls Database Summary

Database name polls

Defined in NCHOME/etc/precision/MonitorSchema.cfg

Fully qualified database table name polls.suspended

Table 14: polls.suspended Table Description (1 of 2)

Column Name Constraints Data Type Description

EntityName NOT NULL

PRIMARY KEY

Text The name of the entity for which to suspend the specified poll.
This should correspond to the EntityName of the entity as
defined in the topology database.

ClassName NOT NULL Text The class name of the AOC associated with this entity.

PollName NOT NULL

PRIMARY KEY

Text The name of the poll to suspend. This should correspond to the
PollName attribute of the poll as defined in the relevant AOC
file.

* indicates that all polls should be suspended.
Netcool/Precision IP 3.6 Monitoring and RCA Guide40

MONITOR Database Reference
The config Database Schema

Table 15 shows the summary information for the config database schema.

The failover Table

The config.failover table contains the failover configuration and current failover state of the
MONITOR component. The columns are described in Table 16.

AuditData Externally defined
vblist data type

Object An optional field into which any audit data may be stored. For
example, audit data might indicate the user responsible for a
particular poll suspension, or the time of the suspension.

ActionType Externally defined
actions data type

Integer This column is for internal use only.

Table 14: polls.suspended Table Description (2 of 2)

Column Name Constraints Data Type Description

Table 15: config Database Summary

Database name config

Defined in NCHOME/etc/precision/MonitorSchema.cfg

Fully qualified database table name config.failover

Table 16: config.failover Table Description

Column Name Constraints Data Type Description

BackupMonitor NOT NULL Boolean This value is true if MONITOR is started using the -backup
command line option. Possible values are:

• 0 - Not configured as the backup system

• 1 - Configured as the backup system

Failedover NOT NULL Boolean The failover state. Possible values are:

• 0 - Not in a failover state

• 1 - In a failover state
Netcool/Precision IP 3.6 Monitoring and RCA Guide 41

Chapter 2: Network Polling
2.5 Polling Agent Database Reference

When the polling agents are launched, they load their configuration files to create their databases and tables.

Note: This section is intended for advanced users who want to interrogate the Netcool/Precision IP polling
agent databases.

The polling agent databases are defined in the files listed in Table 17.

The Timed polling agent is used for ping polling and SNMP polling. The polling agent databases can be
divided into generic and specialized groups.

Generic databases are defined in every polling agent configuration file. These databases hold the network
topology that is to be polled and the polling methodology. The generic databases are:

• topoCache

• polldefCache

Specialized databases are polling agent specific. These databases are handled internally and you do not
normally need to configure inserts into them. The specialized databases are:

• triggers (for Syslog polling)

• trapAgent

• triggers (for Trap polling)

These database tables are described in the following sections.

Table 17: Polling Agent Configuration Files

Polling Agent Configuration File

Timed NCHOME/etc/precision/MonitorTimedStitcherAgent.cfg

Syslog NCHOME/etc/precision/MonitorSysLogStitcherAgent.cfg

Trap NCHOME/etc/precision/MonitorTrapStitcherAgent.cfg

Visionary NCHOME/etc/precision/MonitorVisionaryAgent.cfg
Netcool/Precision IP 3.6 Monitoring and RCA Guide42

Polling Agent Database Reference
The topoCache Database Schema

The summary information for the topoCache generic database schema is shown in Table 18.

The entityByName Table

The entityByName table holds a simplification of the topology information in the master database of
MODEL. The columns are described in Table 19.

Table 18: topoCache Database Summary

Database name topoCache

Defined in NCHOME/etc/precision/MonitorTimedStitcherAgent.cfg

NCHOME/etc/precision/MonitorSysLogStitcherAgent.cfg

NCHOME/etc/precision/MonitorTrapStitcherAgent.cfg

Fully qualified database table name topoCache.entityByName

Table 19: topoCache.entityByName Table Description (1 of 2)

Column Name Constraints Data Type Description

ObjectId PRIMARY KEY

NOT NULL

UNIQUE

Long integer Unique Object ID of the network
entity.

EntityName PRIMARY KEY

NOT NULL

UNIQUE

Text Unique descriptive name of a
network entity.

Address List of text List of OSI model layer 1-7 addresses
for the entity.

Description Text Value of sysDescr MIB variable or
other suitable description of the
entity.
Netcool/Precision IP 3.6 Monitoring and RCA Guide 43

Chapter 2: Network Polling
EntityType Externally defined entityTypes data
type

Integer Element type of the entity. Possible
values are:

• 0 - Unknown

• 1 - Chassis

• 2 - Interface

• 3 - Logical interface

• 4 - Vlan object

• 5 - Card

• 6 - PSU

• 7 - Subnet

• 8 - Module

ClassName Text The class name of the network
entity (if applicable).

EntityOID Text Value of the sysOID MIB variable of
the entity.

Status Externally defined status data type Integer Flag showing status of the network
entity.

Security Text Password to access network entity
(if applicable).

RelatedTo List of text List of connections to the network
entity.

Contains List of text List of elements or other containers
contained within the current
network entity.

UpwardConnectio
ns

List of text List of containers that contain this
entity.

IsActive Externally defined boolean data type Integer Flag indicating whether an Active
Object Class is needed.

CreateTime Time Creation time of network entity
record in table.

ChangeTime Time Time of last modification to the
network entity record.

ActionType Externally defined actions data type Integer Type of record.

Table 19: topoCache.entityByName Table Description (2 of 2)

Column Name Constraints Data Type Description
Netcool/Precision IP 3.6 Monitoring and RCA Guide44

Polling Agent Database Reference
The polldefCache database schema

The summary information for the polldefCache generic database schema is shown in Table 20.

The polldefs table

The polldefs table stores the full definition of the polling methodology, loaded from CLASS through
MONITOR. The columns are described in Table 21.

Table 20: polldefCache Database Summary

Database name polldefCache

Defined in NCHOME/etc/precision/MonitorTimedStitcherAgent.cfg

NCHOME/etc/precision/MonitorSysLogStitcherAgent.cfg

NCHOME/etc/precision/MonitorTrapStitcherAgent.cfg

Fully qualified database table name polldefCache.polldefs

Table 21: polldefCache.polldefs Table Description (1 of 2)

Column Name Constraints Data Type Description

PollName PRIMARY KEY

NOT NULL

Text The unique name of the poll.

PollStatus NOT NULL Integer The status of the poll.

AgentName NOT NULL Text The name of the polling agent executable used
to conduct this poll.

AgentKey Text The agent key, which links the AOC definition
with the polling agent executable and the
stitchers it employs.

The agent key distinguishes between polls that
use the same agent, for example, the timed
stitcher agent which runs both Ping and SNMP
polls. Using the agent key ensures that two
separate instances of the executable
ncp_m_timedstitcher are run (one for
each type of poll).

HostName Text The host machine from which Polling is being
conducted.

Frequency Integer How often the poll is conducted. This column is
only relevant to the timed agents and has no
effect on the non-timed agents (Trap and
Syslog).

Threshold Text A threshold condition for the poll.
Netcool/Precision IP 3.6 Monitoring and RCA Guide 45

Chapter 2: Network Polling
The triggers Database Schema for Syslog Polling

The triggers database is created for the Syslog polling agent. The summary information for the
triggers database schema is shown in Table 22.

The despatch Table

The despatch table stores information about the device from which a syslog message has been received.
The columns are described in Table 23.

Scope Text A filter that constrains poll execution to certain
devices, classes or instances.

ClassName PRIMARY KEY

NOT NULL

Text The name of the class to which the event
belongs.

StitcherName NOT NULL Text The name of the stitcher that the agent will call.

AgentControl Externally defined
vblist data type

Object A list of agent control information, for example,
to define how to handle specific traps.

StitcherInfo Externally defined
vblist data type

Object A list of stitcher Information.

ActionType NOT NULL Integer The type of action the event represents.
Possible values are:

• 0 - Create

• 1 - Change

• 2 - Delete

Table 21: polldefCache.polldefs Table Description (2 of 2)

Column Name Constraints Data Type Description

Table 22: triggers Database Summary

Database name triggers

Defined in NCHOME/etc/precision/MonitorSysLogStitcherAgent.cfg

Fully qualified database table name triggers.despatch

Table 23: triggers.despatch Table Description

Column Name Constraints Data Type Description

FieldNames Externally defined
vblist data type

Object A list of field names.

Mappings List of text A list of mappings.
Netcool/Precision IP 3.6 Monitoring and RCA Guide46

Polling Agent Database Reference
The trapAgent Database Schema

The trapAgent database is created for the trap polling agent. The summary information for the
trapAgent database schema is shown in Table 24.

The configuration Table

The configuration table holds configuration information for the Trap Agent. The columns are
described in Table 25.

Example Configuration of the Trap Agent

The Trap agent can retrieve the source address of the trap from either the payload or the header.

Inserting a value of 1 (the default setting) into the
trapAgent.configuration.SourceByPayload column configures the Trap polling agent to
attempt to retrieve the trap source address from the trap payload. If there is no address in the payload, the
Trap polling agent uses the header source address instead.

Inserting a value of 0 into the trapAgent.configuration.SourceByPayload column
configures the Trap polling agent to retrieve the trap source address from the header.

Table 24: trapAgent Database Summary

Database name trapAgent

Defined in NCHOME/etc/precision/MonitorTrapStitcherAgent.cfg

Fully qualified database table name trapAgent.configuration

Table 25: trapAgent.configuration Table Description

Column Name Constraints Data Type Description

TrapPort Default = 162 Integer The port on which to listen for traps.

SourceByPayload Default = 1 Integer Configures the way in which the trap source
address is retrieved. Possible values are:

• 0 - Retrieve the trap source address from the
IP header.

• 1 - Retrieve the trap source address from the
payload, if possible, or the IP header if there
is no address in the payload.

UnknownDeviceClass Text A text string to be used for handling devices for
which there is no AOC definition.
Netcool/Precision IP 3.6 Monitoring and RCA Guide 47

Chapter 2: Network Polling
The following example insert shows how you might configure the Trap polling agent.

insert into trapAgent.configuration
(

TrapPort, SourceByPayload, UnknownDeviceClass
)
values
(

162, 1, "UnknownDevice"
);

The above example insert configures the Trap polling agent to:

• Listen for traps on port 162.

• Attempt to retrieve the trap source address from the trap payload.

• Use the string UnknownDevice to handle traps from devices with no AOC.

The triggers Database Schema for Trap Polling

The triggers database is created for the trap polling agent. The summary information for the
triggers database schema is shown in Table 26.

The despatch Table

The despatch table contains information about the device on which a trap has been received, such as the
class to which that device belongs (and the monitoring policies that should therefore be applied to that
device).

The Trap agent inserts the received details into the triggers.despatch table which initiates the
necessary stitcher. The stitcher and trigger record combination define how the trap is handled. An event
record is constructed in the stitcher and inserted into the mojo.events database for use by an event
correlation engine such as the RCA Engine. The columns are described in Table 27.

Table 26: triggers Database Summary

Database name triggers

Defined in NCHOME/etc/precision/MonitorTrapStitcherAgent.cfg

Fully qualified database table name triggers.despatch

Table 27: triggers.despatch Table Description (1 of 2)

Column Name Constraints Data Type Description

Community Text A community string.

Enterprise Text The type of enterprise.
Netcool/Precision IP 3.6 Monitoring and RCA Guide48

Polling Agent Database Reference
AgentAddress Text The address of the agent.

TrapType Integer The type of trap received.

SpecificTrapType Integer The specific type of trap.

TrapName Text The name of the trap.

TrapDescription Text A description of the trap.

TimeTicks Long integer The time ticks (in hundredths of a second) since
the system was last initialized.

ResolvedVarBinds Externally defined
text data type

Object Resolved varbinds.

UnResolvedVarBinds Externally defined
text data type

List type text Unresolved varbinds.

Table 27: triggers.despatch Table Description (2 of 2)

Column Name Constraints Data Type Description
Netcool/Precision IP 3.6 Monitoring and RCA Guide 49

Chapter 2: Network Polling
Netcool/Precision IP 3.6 Monitoring and RCA Guide50

3. Monitor_Config_Tool.fm August 8, 2006

Chapter 3: MONITOR Configuration Tool

This chapter describes how to create, edit and browse the Netcool/Precision IP active object classes (AOCs)
using the MONITOR Configuration tool. The AOC files include the polling definitions used by
MONITOR.

This chapter contains the following sections:

• Overview of the MONITOR Configuration Tool on page 52

• Starting the MONITOR Configuration Tool on page 54

• Navigating the MONITOR Configuration Tool on page 58

• Modifying the Instantiate Rule for a Class on page 64

• Editing Menus in the Precision Desktop on page 68

• Managing Policies on page 70

• Editing Poll Definitions on page 72

• Planning your Classes on page 87
Netcool/Precision IP 3.6 Monitoring and RCA Guide 51

Chapter 3: MONITOR Configuration Tool
3.1 Overview of the MONITOR Configuration Tool

The MONITOR Configuration tool is a user interface used to create, edit and browse active object classes
(AOCs). It is the recommended method of making adjustments to the AOCs. An explanation of the
structure and function of the AOCs can be found in the Netcool/Precision IP Discovery Configuration Guide.
The event correlation rules, and extensions to the AOCs that control root cause analysis (RCA), are
described in Chapter 7: Root Cause Analysis on page 155.

The MONITOR Configuration tool allows you to customize all attributes of the AOCs using dedicated
editor windows. All these editors are described in detail in this chapter.

Note: The MONITOR Configuration tool is not available on Windows. For more information on
customizing the AOCs on Windows, see Customizing the AOCs Manually on page 52.

Poll Definitions

The poll definitions have many important functions. They define how, when and where MONITOR and
the polling agents poll the network. For example, they specify how often a device is polled, the type of polling
agent employed to do the polling, and the information that is collected during the polling process.

The poll definitions are part of the extensions to the AOCs and can be constructed or customized using the
Poll Editor window in the MONITOR Configuration tool.

Like other attributes of the AOCs, the poll definitions are inherited by child classes from their parent classes
unless locally overriden. For more information on AOC syntax, see the relevant chapter in the
Netcool/Precision IP Discovery Configuration Guide.

Event Correlation Rules

The event correlation rules (also known as Event Methods) within an AOC cannot be edited using the
MONITOR Configuration tool. You must manually create or edit these rules using a text editor. For
information on the event correlation rule syntax, see The Event Correlation Rules on page 173.

Customizing the AOCs Manually

The MONITOR Configuration tool is not available on Windows. All aspects of the AOCs can be
customized manually, by editing the AOC text files.

For more information on editing the AOCs manually, including AOC architecture and syntax, backing up
the AOC files, and an overview of the components of the AOCs, see the Netcool/Precision IP Discovery
Configuration Guide.
Netcool/Precision IP 3.6 Monitoring and RCA Guide52

Overview of the MONITOR Configuration Tool
For detailed information on the attributes that can be used in the poll definitions, see Attributes of the Poll
Definitions on page 75.

For detailed information on the event correlation methods, see Event Rule Attributes on page 174.
Netcool/Precision IP 3.6 Monitoring and RCA Guide 53

Chapter 3: MONITOR Configuration Tool
3.2 Starting the MONITOR Configuration Tool

Before starting the MONITOR Configuration tool you must ensure the following components are running:

• CLASS: the component that contains the AOC definitions.

• AUTH: the component that authenticates the users.

This section describes the process of starting the MONITOR Configuration tool. It also describes the
configuration of CLASS and the creation of users in AUTH.

Configuring CLASS for the MONITOR Configuration Tool

CLASS contains the AOC definitions. The MONITOR Configuration tool downloads the AOC
definitions from CLASS and returns any changes. CLASS broadcasts the changes to the other Precision
Server components that require the AOC definitions. For more information about CLASS, see the
Netcool/Precision IP Discovery Configuration Guide.

Before starting the MONITOR Configuration tool, you can start CLASS with the -read_aocs_from
command line option. This option determine which AOC definitions CLASS reads and subsequently sends
to the MONITOR Configuration tool.

If you intend to create new class definitions using the MONITOR Configuration tool, you should create a
directory to store the new AOCs and instruct CLASS to write the AOC files to this directory at regular
intervals using the -write_aocs_to command line option. If CLASS terminates, there is an up-to-date
version of the AOCs in a text format in addition to the cache. The output AOC text files can be used as the
input for CLASS when it is restarted.

You should not write new AOCs back to the directory from which they are read.

The CLASS command line options are described in full in the Netcool/Precision IP Discovery Configuration
Guide

Configuring AUTH for the MONITOR Configuration Tool

AUTH is needed to authenticate your MONITOR Configuration tool session.
Netcool/Precision IP 3.6 Monitoring and RCA Guide54

Starting the MONITOR Configuration Tool
All users of the Netcool/Precision IP are assigned user profiles which specify the actions that they are allowed
to perform. Setting up user profiles is described in the Netcool/Precision IP Discovery Configuration Guide. As
the MONITOR Configuration tool only interacts directly with AUTH and CLASS, only those permissions
relating to access to the service Class are relevant to users of the MONITOR Configuration tool. In this
context, a user can have three possible permission configurations:

• OQL Read/Write access

• OQL Read access

• No OQL access

All of the operations described in this chapter require OQL Read/Write access.

If you are using a user profile which has only OQL Read access, the MONITOR Configuration tool
functionality is unchanged, but you can only view the information. All functions which change any
information are disabled.

If you are using a user profile which has no OQL access, a message is displayed notifying you that you do
not currently have permission to use the MONITOR Configuration tool, and the MONITOR
Configuration tool does not start.

MONITOR Configuration Tool User Modes

The MONITOR Configuration tool can be run in two modes; high level (the default) and low level. The
editors which are available in the MONITOR Configuration tool are defined by the mode of operation.

The mode is set by the -usermode command line option.

If you need to edit the poll definitions, you must run the MONITOR Configuration tool in low level mode.
In this mode each MONITOR Configuration tool Class icon includes a Poll Editor button. MONITOR
Configuration tool command line options are described in the next section.
Netcool/Precision IP 3.6 Monitoring and RCA Guide 55

Chapter 3: MONITOR Configuration Tool
Starting the MONITOR Configuration Tool

To start the MONITOR Configuration tool enter the command ncp_monitorconfig and the
required command line options. The command line options for the MONITOR Configuration tool are:

ncp_monitorconfig –domain DOMAIN_NAME [-usermode USERMODE] [-latency LATENCY]
[-username USERNAME] [-password PASSWORD] [-debug DEBUG] [-help] [-version]

The command line options are described in Table 28.

Table 28: ncp_monitorconfig Command Line Options (1 of 2)

Option Description Required/Optional

-domain DOMAIN_NAME The name of the domain under which the
MONITOR Configuration tool is running.

Required.

-usermode USERMODE This option can be used to start the
MONITOR Configuration tool in highlevel
(simplified) or lowlevel (more complex)
mode. If no value is specified, highlevel
mode is used.

Optional.

-latency <LATENCY> The maximum time in milliseconds (ms) that
the component waits to connect to another
Precision Server process via the messaging
bus. You may need to specify a latency, using
the -latency command line option, to
increase the maximum time in milliseconds
(ms) that the MONITOR Configuration tool
waits to connect to CLASS via the messaging
bus. As the AOC definitions can be very
large, they may cause the MONITOR
Configuration tool to timeout when
downloading them from CLASS.

Optional.

-username USERNAME The username you wish to use to log into the
domain.

If the username is not supplied on the
command line it must be entered at
the login prompt instead.

-password PASSWORD The password to access the MONITOR
Configuration tool.

For security reasons you should use this
option carefully, as other users may be able
to see your password. Micromuse
recommends that you enter your password
when prompted rather than at the
command line.

A password is required for the
MONITOR Configuration tool, but
should be specified at the login
prompt rather than on the command
line.

-debug DEBUG The level of debugging output (1-4, where 4
represents the most detailed output).

Optional.
Netcool/Precision IP 3.6 Monitoring and RCA Guide56

Starting the MONITOR Configuration Tool
–help Prints out a synopsis of all command line
options for the component.

If specified, the component is not started
even if –help is used in conjunction with
other arguments.

Optional.

-version Prints the version number of the
component.

If specified, the component is not started
even if –version is used in conjunction with
other arguments.

Optional.

Table 28: ncp_monitorconfig Command Line Options (2 of 2)

Option Description Required/Optional
Netcool/Precision IP 3.6 Monitoring and RCA Guide 57

Chapter 3: MONITOR Configuration Tool
3.3 Navigating the MONITOR Configuration Tool

This section describes the basic operation of the MONITOR Configuration tool.

Logging into the MONITOR Configuration Tool

When the MONITOR Configuration tool starts, the Login window is displayed, as shown in Figure 3.
Enter your username and password and select Login.

In order to log into the MONITOR Configuration tool you must have permission to access the CLASS
databases.

The default username and password combination is admin and no password. Micromuse recommends that
the password for admin is changed during installation.

Figure 3: Login Window
Netcool/Precision IP 3.6 Monitoring and RCA Guide58

Navigating the MONITOR Configuration Tool
The Main View

After you have successfully logged in, the MONITOR Configuration tool displays the main view, as shown
in Figure 4.

The areas within the main view are described in Table 29.

Figure 4: MONITOR Configuration Tool Main View

4 5

6 7

1 2 3

Table 29: Main View Descriptions (1 of 2)

Item Name Description

1 Toolbar Contains the MONITOR Configuration tool mode buttons. These set the mode of
operation for the main view, as described in MONITOR Configuration Tool Buttons on
page 60.

2 Search bar Enter an AOC name (case sensitive) in the search box. If the class is found, it is shown
and highlighted in the main work area

3 MONITOR
Configuration Tool
area

Displays the AOCs in a directory-like structure.

This area can be shown or hidden using the menu option View→MONITOR
Configuration Tool.

4 Main work area Displays a graphical representation of the AOC hierarchy.
Netcool/Precision IP 3.6 Monitoring and RCA Guide 59

Chapter 3: MONITOR Configuration Tool
Using the Panner and Zoom Functions

The menu options available in the Main View are:

• View→Show Panner shows or hides the panner tool. The panner tool contains a minimized overall
representation of all the classes. Contained within the overall representation is a small box that
represents the currently visible part of the class hierarchy.

You can drag the small box around to scroll around the classes. You can use the magnifying glass
buttons on the panner tool to zoom in and out of the class hierarchy.

• View→Panner Location selects the position of the panner tool within the Window. Select one of the
four corner options.

• View→Zoom to selects the level of zoom for the Main Work Area.

MONITOR Configuration Tool Buttons

The MONITOR Configuration tool mode buttons are displayed in the toolbar, as shown in Figure 5.

5 Class Icon The representation of a class in the main work area. The editor buttons displayed
depend on the usermode command line option and the and the mode of operation
set on the toolbar.

6 Panner tool The panner tool contains a minimized overall representation of all the classes.
Contained within the overall representation is a small box that represents the currently
visible part of the class hierarchy.

To display the panner tool, select the menu option View→Show Panner. The position
of the panner can be changed using the menu option View→ Panner Location.

7 Status bar Displays the status of the current operation. It also displays the name of the domain
and your username.

Table 29: Main View Descriptions (2 of 2)

Item Name Description

Figure 5: Toolbar

1 2 3 4
Netcool/Precision IP 3.6 Monitoring and RCA Guide60

Navigating the MONITOR Configuration Tool
The toolbar buttons are:

1. Select Class tool: changes the cursor to Select mode, which is the default. In select mode you can click
the dialog buttons attached to each class and click the class names to rename them. Select mode is the
only mode in which the class dialog buttons are enabled.

2. Create New Class tool: changes the cursor to Add mode, in which you can click once on any class to
add a child class below the existing class in the hierarchy.

3. Re-parent Class tool: changes the cursor to Move mode, in which you can move a class to a new
location in the hierarchy. To move a class, click once on the class to be moved and click once on the
new parent.

4. Delete Class tool: changes the cursor to Delete mode, in which you can delete a class by clicking once
on the class to be deleted.

!!
Warning: There is no undo function if you delete, move or add classes using the MONITOR
Configuration tool.

Class Icons

The class icons in the main work area contain a number of edit buttons, as shown in Figure 6.

Figure 6: Class Icon

1 2 3

7 8

64

5

Netcool/Precision IP 3.6 Monitoring and RCA Guide 61

Chapter 3: MONITOR Configuration Tool
Each class icon edit button has one or more dependencies. Table 30 describes the items and buttons in the
class icon and identifies the conditions that must be met for the item to appear. The name of the button is
displayed as a tooltip when the cursor is placed over the button.

Changing the Visual Icon

To change the icon that the Precision Desktop displays for the class:

1. Click the Change Icon button. The Open window is displayed.

2. Browse through the directory structure to the location of the icons. By default the images are stored
in the NCHOME/precision/images directory.

If you select an image in a different directory, the images is copied to the
NCHOME/precision/images directory.

Note: NCHOME is the environment variable that contains the path to the Netcool Suite home
directory. For information on how this environment variable varies with platform, see Operating System
Considerations on page 9.

Table 30: Main View Descriptions

Item Name Description

1 Visual icon Icon representing the class type.

2 Change Icon
button

Selects an icon to display in the Precision Desktop for the class, as described in
Changing the Visual Icon on page 62. The Precision Server must be installed for this
button to be displayed.

3 Change Polls
button

Customizes the poll definitions, as described in Editing Poll Definitions on page 72. The
monitoring and RCA components must be installed, and the command line option
usermode must be set to lowlevel for this button to be displayed.

4 Change Identity
button

Displays the Filter Builder window, as described in Modifying the Instantiate Rule for a
Class on page 64. The Precision Server must be installed for this button to be displayed.

5 Change Menus
button

Displays the Menu Builder window, as described in Editing Menus in the Precision
Desktop on page 68. The Precision Server must be installed for this button to be
displayed.

6 Change Policies
button

Allows high-level configuration of monitoring policies, as described in Managing
Policies on page 70. The monitoring and RCA components must be installed for this
button to be displayed.

7 Class name The name of the class.

You can rename the class by clicking the class name. Class names may not include
spaces or non alphanumeric characters.

8 Show or Hide class Shows or hides the child classes for the class.
Netcool/Precision IP 3.6 Monitoring and RCA Guide62

Navigating the MONITOR Configuration Tool
3. Select any image file with the .xmp file extension. The .xpm file is a UNIX-X11 PixMap image
(256 color image for X Windows).

4. Click Select to select the image and close the Open window.
Netcool/Precision IP 3.6 Monitoring and RCA Guide 63

Chapter 3: MONITOR Configuration Tool
3.4 Modifying the Instantiate Rule for a Class

The Filter Builder window is used to define or modify the instantiate rules for a class. To open the Filter
Builder window, click the Change Identity button on the class icon. This button is only displayed for each
class icon when the Precision Server is installed.

Each time the network discovery locates a new device, the device is compared to the instantiate rules. The
instantiate rule is a filter and any device that matches the filter is stored in the network topology database
MODEL with a link to the class. This process is called Instantiation.

The Filter Builder window is shown in Figure 7.

Figure 7: Filter Builder Window

1 2 3 4

5

Netcool/Precision IP 3.6 Monitoring and RCA Guide64

Modifying the Instantiate Rule for a Class
The Filter Builder window is described in Table 31.

Filter Builder Modes of Operation

The Filter Builder window modes of operation are selected using the toolbar shown in Figure 8.

The toolbar buttons and the modes of operation are described in Table 32

Table 31: Filter Builder Window Description

Item Component Description

1 Toolbar Selects the modes of operation.

2 Search Box Used to search for an attribute in the hierarchy. If you enter partial attribute names, the
first matching attribute is selected. Press Enter again to move to the next matching
attribute.

3 Filter detail area Displays all of the attributes that can be used in the instantiate rule.

4 Main work area Displays the conditions of the instantiate rule and shows how the conditions are
logically linked.

5 Filter condition
editor area

This area is used for creating or editing the details of the conditions. The area displays
the details for the condition selected in the main work area.

Figure 8: Filter Builder Toolbar

1 2 3 4

Table 32: Filter Builder Toolbar Descriptions

Item Button Description

1 Select When enabled, you can edit the attribute test for the selected condition in the filter
condition editor area.

2 AND When enabled, you can create an AND condition in the main work area. Return to Select
mode to edit the condition in the filter condition editor area.

3 OR When enabled, you can create an OR condition in the main work area. Return to Select mode
to edit the condition in the filter condition editor area.

4 Delete When enabled, you can delete a condition in the main work area by clicking the condition.
This operation cannot be undone.
Netcool/Precision IP 3.6 Monitoring and RCA Guide 65

Chapter 3: MONITOR Configuration Tool
Constructing Complex Rules

The logical linking of conditions to create complex instantiate rules is graphically displayed in the main work
area.

To construct complex instantiate rules, join conditions using the AND and OR operators. A conditions
joined using AND is shown adjacent to the others. Conditions joined using OR are shown parallel to other
conditions. You can create as many nested AND and OR conditions as necessary.

To add a new condition:

1. Move the cursor within the main work area to select one or more pre-existing conditions. These
conditions are bounded by a rectangle.

2. If OR mode is selected, clicking the mouse button encloses all selected conditions within a rectangle.
The new condition is added to the flow in parallel to these conditions.

3. If AND mode is selected, clicking the mouse button encloses all selected conditions within a rectangle
if required. The new condition is added to the flow adjacent to these conditions.

Any given instantiate rule is considered to have been passed if there is a path that can be taken from the left
hand side of the display to the right that satisfies each condition in between.

The Filter Condition Editor

When a condition is selected in the main work area, the details of the condition are displayed, and can be
edited, in the filter condition editor area.

The fields in the filter condition editor area are described in Table 33.

Table 33: Filter Condition Editor Area Fields

Field Description

Name The name of the device attribute to be tested.

Test Select an operator from this drop down list. Possible values include:

• =

• >

• like

• not like

Value The value for the condition. See note below this table.
Netcool/Precision IP 3.6 Monitoring and RCA Guide66

Modifying the Instantiate Rule for a Class
Note: The acceptable values for this attribute (such as, character strings or integers) are indicated above the
Value field. Any other requirement (for example, a maximum number of characters) is shown below the
Value field. You must use the backslash character (\) to escape the dot when entering values such as an
Entity OID.
Netcool/Precision IP 3.6 Monitoring and RCA Guide 67

Chapter 3: MONITOR Configuration Tool
3.5 Editing Menus in the Precision Desktop

The Menu Builder window is used to construct the menu items that appear in the Precision Desktop. To
open the Menu Builder window, click the Change Menus button on the class icon.

You can define a context-sensitive menu option that appears in the Precision Desktop when there is an event
associated with a device that has been instantiated to this class. The Menu Builder window is shown in
Figure 9.

In order to add a menu, click the + button and type a name in the Label field. As you type the name, it
automatically appears in the Menu column. This is how it ultimately appears in the Precision Desktop. The
fields for the menu are described in Table 34.

Figure 9: Menu Builder Window

Table 34: Menu Builder Field Descriptions (1 of 2)

Field Description

Label The name of the option that is to be listed on the Precision Desktop menu.

Subject identifies the service or Precision Server component with which the OQL command string is
associated. Typically specifies an eval statement such as eval(text, '$Exec').
Netcool/Precision IP 3.6 Monitoring and RCA Guide68

Editing Menus in the Precision Desktop
When you have finished creating your menu, click OK to save them and exit the Menu Builder window.

You can create any number of menus. You can also use the up and down arrows to move the position of a
an item in the Precision Desktop menu and add horizontal dividers and submenus that can contain as many
menu methods as you wish.

The Menu Builder window, shown in Figure 9, contains the following menus defined for the current class:

• Login: allows you to telnet into a device associated with this AOC where an event or alert has been
generated.

• Ping: allows you to run an extra ping on the device.

• Route: runs a trace route application on the device.

Copy Values Select the true or false radio button. If true, the values in the fields of the triggering event overwrite
the values in the database referenced in the send string field. If false, the values in the target
database are those specified by the send string attribute. This attribute is only used when using a
run directive to insert an event into a database that has exactly the same fields, such as the AMOS
Events database.

Send String The OQL insert to be sent to the component specified as the subject.

Table 34: Menu Builder Field Descriptions (2 of 2)

Field Description
Netcool/Precision IP 3.6 Monitoring and RCA Guide 69

Chapter 3: MONITOR Configuration Tool
3.6 Managing Policies

Network monitoring is controlled by enabling and disabling polling policies in the Policy Editor window.

To open the Policy Editor window, click the Change Policies button on the class icon. This button is only
displayed when the monitoring and RCA components of Netcool/Precision IP are installed.

The Policy Editor window, shown in Figure 10 is used to configure and implement the monitoring policies
supplied with Netcool/Precision IP. The monitoring policies contain both polling and event correlation
functionality.

Figure 10 shows the expanded Policy Editor window. The expanded section is displayed by selecting the
MORE>> button. When expended this button changes to LESS<<.

Figure 10: Policy Editor Window

1 2

3 4
Netcool/Precision IP 3.6 Monitoring and RCA Guide70

Managing Policies
The components of the Policy Editor window are described in Table 35.

!!
Warning: The term Frequency, when displayed in the Policy Editor window, always refers to a time
period in seconds.

Selecting and Configuring Polling Policies

To enable a polling policy, select the checkbox to the left of the policy. To disable a policy, deselect the
checkbox.

To configure a polling policy, select the policy in the Available Policies area and expand the Policy Editor
window. The Parameters area displays the parameters for the selected policy.

Set the parameter to the required value. For example, you may want to change the polling frequency
parameter.

To save changes and implement the policies, click the OK button. When you close the Policy Editor window,
the MONITOR Configuration tool sends an update to CLASS.

The following error message is received if CLASS does not respond to the update:

Process ncp_class did not respond before the -latency timeout delay. Your changes may
not have been applied.

If CLASS is running, you should restart the MONITOR Configuration tool with the -latency command
line option set to a larger value. The default latency value is 60000 ms).

Table 35: Policy Editor Window Component Descriptions

Item Component Description

1 Available Policies Displays the available monitoring policies.

2 Policy Description area Displays the description of the selected policy.

3 Parameters area Displays the parameters for the selected polling policy. This area is available
when the Policy Editor window is expanded.

4 Parameter Description area Displays information about the parameter you are currently changing. This
area is available when the Policy Editor window is expanded.
Netcool/Precision IP 3.6 Monitoring and RCA Guide 71

Chapter 3: MONITOR Configuration Tool
3.7 Editing Poll Definitions

The Poll Editor window, shown in Figure 11, allows you to customize the poll definitions or create new poll
definitions. To open the Poll Editor window, click the Change Polls button of the class you want to edit.

The areas within the Poll Editor window are described in Table 36.

Figure 11: The Poll editor main window

1 2 3 4 5

6 7 8

Table 36: Poll Editor Window Description (1 of 2)

Item Area Description

1 Search box Used to search for an poll definition in the hierarchy. If you enter partial poll definition
names, the first matching entry is selected. Press Enter again to move to the next
matching poll definition.

2 Poll console Used for navigating through the hierarchy of AOCs to examine the poll definitions. You
can navigate upwards through the hierarchy, but not downwards from the class you are
in.
Netcool/Precision IP 3.6 Monitoring and RCA Guide72

Editing Poll Definitions
Note: Editing a definition inherited from a class above the current class only overrides that definition in the
class you are editing. It does not change that definition in the class in which it was defined.

Editing a Poll Definition

The poll definition name and the poll type are edited using the Poll Name and Poll Type buttons in the
Poll Editor window, as described in Table 36. All other attributes are edited using the Values Editor window.

To display the Values Editor window, click the Edit Poll button in the Poll Editor window. In the Values
Editor window the PollName and PollType fields are always disabled. If the poll type is not set to
UserDefined, the AgentName and StitcherName fields are also greyed out. All other compulsory attributes
are present in the Values Editor window.

3 Add Poll button Adds a new poll definition.

Clicking this button creates a new definition with a name based on the current class, and
the values are set to ="" or to the default values. Customize this new definition to create
the required poll definition.

4 Delete Poll button Deletes the selected poll definition.

5 Main window Displays a list of poll definitions for the class.

Poll definitions are shown in different colors according to where they are defined.
Inherited definitions are purple, locally defined definitions are gold, and inherited
definitions which have been locally overridden are shown in a light purple box.

6 Poll Name field Changes the poll definition name.

Note that you cannot rename an inherited poll definition.

7 Poll Type field Change the poll type to change several linked attributes at the same time.

For example, changing the poll type from Trap to Ping, automatically changes the
stitcher to DefaultPing.stch and the agent executable to
ncp_m_timedstitcher.

Note that you cannot rename an inherited poll definition.

8 Edit Poll button Opens the Values Editor window for the selected poll definition.

Table 36: Poll Editor Window Description (2 of 2)

Item Area Description
Netcool/Precision IP 3.6 Monitoring and RCA Guide 73

Chapter 3: MONITOR Configuration Tool
The Values Editor window is shown in Figure 12.

To change the parameters of the attributes, use the drop down lists and text boxes.

To add an attribute, click the Add button. The new field can refer to any of the attributes of a poll definition.

To delete an optional attribute, select the attribute by clicking in the parameter field then click the Delete
button.

To add an item to a list, type the item you wish to add in the text box and click the + button.

To delete items from a list, select an item from the list and click the X button.

All the attributes of the poll definition are edited using the procedure above, with the exception of fields
containing a filter. Editing the filter for a field is describe in Editing Attribute Containing Filters on page 85.

Figure 12: The Values Editor
Netcool/Precision IP 3.6 Monitoring and RCA Guide74

Editing Poll Definitions
Attributes of the Poll Definitions

The attributes available for constructing poll definitions are described in Table 37. All attributes are
compulsory unless otherwise stated. If you write your own poll definitions, you must make sure that you use
the appropriate attributes for the stitcher that you intend to use. See Chapter 4: Stitchers Used for Polling on
page 89 for a list of the stitchers, including the poll definition attributes that each stitcher requires.

Table 37: Poll Definition Attribute Descriptions (1 of 2)

Attribute Type Description

PollName String Defines the name of the poll definition. It must be unique within the specified AOC.
For example:

PollName = "defaultPing",

PollStatus Boolean Used by the Policy Editor to turn a particular poll definition on (=1) or off (=0). If any
other value is specified, PollStatus defaults to 1. For example:

PollStatus = 1,

AgentName String Defines the agent executable that is used. For Ping and SNMP polls this is
ncp_m_timedstitcher, for syslog polling it is ncp_m_syslogstitcher, for
trap monitoring it is ncp_m_trapstitcher, and for Visionary integration it is
ncp_m_visionary. For example:

AgentName = "ncp_m_timedstitcher",

AgentKey String Allows multiple and distributed polling agents to be run (on separate machines if
required).

By default, the timed agent only polls elements with valid IP addresses. Adding the
plus symbol (+) enables the timed agent to poll non-IP devices, such as, local
interfaces which can be interrogated through their owning device.

For example:

AgentKey = "PING",
AgentKey = "LINK+",
AgentKey = "NCV",

StitcherName String The name of the stitcher file that the agent executable runs. Text-based stitchers are
stored in NCHOME/precision/monitor/stitchers, and precompiled stitchers
are stored in NCHOME/precision/monitor/lib.

StitcherName should not include filename extensions. Additionally, when
referring to precompiled stitchers, the libPollerStitcher prefix should be
omitted.

For example:

StitcherName = "DefaultPing",
Netcool/Precision IP 3.6 Monitoring and RCA Guide 75

Chapter 3: MONITOR Configuration Tool
Frequency Integer Specifies the interval at which the agent executable runs the stitcher, in seconds. Only
applies only to the timed polling agent. For example:

Frequency = 300,

Scope String Specifies the types of devices the poll is run on. The scope attribute is applied to the
master.entityByName database in MODEL. If the scope condition evaluates to
false the poll is not run on that device.

If this attribute is not included in the poll definition, the default option is to pass all
types of device.

This attribute only applies to stitchers that are executed by
ncp_m_timedstitcher and ncp_m_visionary.

The following example, restricts polling to interfaces and main nodes without
interfaces. Since the IP address of a main node is the same as the IP address of one of
its interfaces, this ensures that the same address is not pinged twice.

Scope = "((Contains is NULL AND EntityType=1)
OR EntityType=2)",

AgentControl String This optional attribute applies to non-timed polling agents only. It is an object that
contains a list of sub-attributes, as shown below:

AgentControl = {
<sub-attribute1>,
<sub-attribute2>,
<sub-attribute..>,
<sub-attributeN>,
}

The available sub-attributes are described in Table 38.

StitcherInfo String The mandatory attribute, StitcherInfo, contains a list of optional sub-attributes.
The sub-attributes of StitcherInfo are configurable and can contain any
name-value pair. You can also leave StitcherInfo unsassigned.

The data types of the sub-attributes of StitcherInfo do not have to be defined in
the poll definitions. The data types can be specified in the stitcher file. A number of
common sub-attributes used by the stitchers are described in Table 39.

Table 37: Poll Definition Attribute Descriptions (2 of 2)

Attribute Type Description
Netcool/Precision IP 3.6 Monitoring and RCA Guide76

Editing Poll Definitions
Table 38 describes the sub-attributes of the AgentControl attribute.

Table 38: Sub-Attributes of the AgentControl Attribute (1 of 2)

Sub-Attribute Type Description

KnownTraps String A list of traps that the trap agent considers for processing. Names of traps can be
specified, or you can use the following special values:

• ALL - the agent processes all traps it receives, with the exception of those named
in the OmitTraps section.

• UNHANDLED - the agent uses this poll definition to process any traps which are
not in the KnownTraps section of any poll definitions in scope, and which are
not named in the OmitTraps section.

This sub-attribute only applies to the trap polling agent. For example:

KnownTraps = ["linkDown","linkUp"],

OmitTraps String Lists the traps that the trap agent must not consider for processing. If a trap named in
OmitTraps is received, the trap agent does not start the stitcher and discards the
trap. The following example lists two traps to omit:

OmitTraps = ["coldStart","warmStart"],

This sub-attribute only applies to the trap polling agent.

UnknownTrap
Handling

string A boolean expression that defines whether a trap which is not defined in any of the
MIBs available to the trap agent should be processed in this poll definition. The MIB
definitions are stored in NCHOME/precision/mibs.

A trap which is not defined in a MIB cannot have its enterprise OID and trap number
resolved to an equivalent textual identifier.

This sub-attribute only applies to the trap polling agent. For example:

UnknownTrapHandling = False,

FileNames String Specifies which system files are parsed for messages. The following example specifies
that the /var/adm/messages file should be parsed:

FileNames = ["/var/adm/messages"],

This sub-attribute only applies to the syslog polling agent.

FieldNames String Specifies which fields of the system message are extracted and can therefore be used
by the stitcher.

This sub-attribute only applies to the syslog polling agent. For example:

FieldNames =
["Date","Time","NodeName","Service","Message"],
Netcool/Precision IP 3.6 Monitoring and RCA Guide 77

Chapter 3: MONITOR Configuration Tool
Reread Boolean Defines the location to start reading a file from. Possible values are:

• 0 - False - specifies that the system file is parsed from the place it was last read.

• 1 - True - specifies that the file is parsed again from the start.

This sub-attribute only applies to the syslog polling agent. For example:

Reread = 0,

RegExps String A list of regular expressions, which has a one-to-one correspondence to the field
names defined in the FieldName attribute. A typical assignment is given below:

RegExps = [
"[A-Z][a-z][a-z] [0-9][0-9]*",
"[0-9][0-9]*:[0-9][0-9]*:[0-9][0-9]",
"[a-zA-Z0-9\.]*",
"[A-Za-z0-9]*\[[0-9]*\]:",
".*:"
],

This sub-attribute only applies to the syslog polling agent.

Delimiter String Used in parsing the regular expressions. A delimiter defines the separation of the
regular expressions. The following example specifies that a whitespace is considered
the break between two fields in a syslog message:

Delimiter = " ",

You can also specify a comma-separated list of delimiters. In the following example,
any of the delimiters in the list is used as the separation of the regular expressions:

Delimiter = ["TD: ", "PP: "],

This sub-attribute only applies to the syslog polling agent.

Mappings String Specifies which of the fields listed in the FieldNames attribute identifies the
originator of the system message. For example:

Mappings = ["NodeName"],

This sub-attribute only applies to the syslog polling agent.

Table 38: Sub-Attributes of the AgentControl Attribute (2 of 2)

Sub-Attribute Type Description
Netcool/Precision IP 3.6 Monitoring and RCA Guide78

Editing Poll Definitions
Table 39 describes a number of the sub-attributes of the StitcherInfo attribute.

Table 39: Sub-Attributes of the StitcherInfo Attribute (1 of 5)

Sub-Attribute Type Description

CorrelateBy String This attribute is used in calculating whether a series of linkUp and
linkDown traps constitutes a flapping device. If CorrelateBy is not
assigned, incoming traps are only correlated by IP address.

A certain number of traps from one device in a certain time period
constitutes flapping. The following example ensures the traps are
additionally correlated by interface number:

CorrelateBy = [‘ifIndex’]

Description String The description that is included in the event generated by the stitcher. For
example:

Description = "My Threshold event",

When used in poll definitions using the AocDefinedThreshold stitcher,
the event description can include SNMP data retrieved from the device. For
example:

Description = 'Problem with interface
eval(text,"&SNMP.VALUE.ifName").',

For more information on using the eval language with the
AocDefinedThreshold stitcher, see Extended Eval Language Support for
SNMP Threshold Polling on page 92.

DsmAddress String The IP address of the Netcool/Visionary Distributed Status Monitor (DSM).
For example:

DsmAddress="127.0.0.1",

For further information about DSMs, see the Netcool/Visionary 2.7
documentation set.

DsmName String The name of the Netcool/Visionary DSM. For example:

DsmName="dsm1",

EventName String The name of the event generated by the stitcher. For example:

EventName = 'threshBreach',

Retries Integer The number of times that a stitcher attempts to re-poll a device if a poll fails.
For example:

Retries = 3,

RuleSet String Defines the ruleset that is used to correlate this event. For example:

RuleSet = 'eventToAlertWith24HourClear',
Netcool/Precision IP 3.6 Monitoring and RCA Guide 79

Chapter 3: MONITOR Configuration Tool
Severity Integer Defines the severity of the event generated by the stitcher. For example:

Severity = 3,

TimeOut Integer Used to determine how long a stitcher waits for a response from a polled
device before considering the request to have timed out. For example, in
libPollerStitcherDefaultPing.so the following value is
measured in milliseconds:

TimeOut = 5000,

MibVariable String MibVariable specifies the non-repeating MIB variable to be polled for. For

example:

MibVariable = "freeMem",

Attributes MibVariable, Comparison and Threshold must be used
together to form an SNMP threshold condition. The format is:

MibVariable = Value
Comparison = Value
Threshold = Value

Comparison String This attribute must follow MibVariable. Possible values are:

• ">" - greater than

• ">=" - greater than or equal to

• "<=" - less than or equal to

• "==" - equal to

• "<>" - not equal to

For example:

Comparison = ">"

Threshold String This sub-attribute of StitcherInfo is used in poll definitions using the
DefaultSnmpThreshold stitcher, as well as in poll definitions using the
AocDefinedThreshold stitcher.

When used in poll definitions using the DefaultSnmpThreshold
stitcher, this attribute must follow Comparison.

For example:

Threshold= 100000,

When used in poll definitions using the AocDefinedThreshold stitcher,
Threshold defines the condition that, if breached, causes an event to be
raised. For more information on this attribute, see Defining a Threshold
Condition for SNMP Polling on page 83.

Table 39: Sub-Attributes of the StitcherInfo Attribute (2 of 5)

Sub-Attribute Type Description
Netcool/Precision IP 3.6 Monitoring and RCA Guide80

Editing Poll Definitions
RestoreEvent Boolean Defines whether a restore event is generated if the result of the SNMP
conditional test, defined by MibVariable, Comparison and
Threshold, falls below the threshold condition, having previously
exceeded it. Possible values are:

• 1 - True - a restore event is generated.

• 0 - False (Default) - no restore event is generated.

For example:

RestoreEvent = 0,

PollFailEvent Boolean Defines whether a poll fail event is generated if no result is returned for an
SNMP query of a device. Possible values are:

• 1 - True - no event is generated.

• 0 - False (Default) an event is generated with a severity of 3.

For example:

PollFailEvent=0,

ThresHold String Specifies the value of the Service field defined in the FieldNames
attribute of AgentControl which the stitcher is looking for in syslog
polling. The following example tells the stitcher to only process a message if
the Service field of the message contains the text unix:

ThresHold = 'unix:',

ThresHold is used in syslog monitoring.

Varbinds List A list of the SNMP variables to be initially gathered by the poll. For a table
poll all the entries should have the same index, ideally being from the same
table. The SNMP variables retrieved will be included in the event sent by the
stitcher. The variables are also available for use in other attributes of the poll
definition by using the eval language.

This sub-attribute of StitcherInfo is only used in poll definitions using the
AocDefinedThreshold stitcher.

TablePoll Boolean A boolean flag indicating whether the poll is to gather single instances of the
specified SNMP variable or walk a whole table, where

0=Single instance

1=Table poll

For example:

TablePoll = 1,

This sub-attribute of StitcherInfo is only used in poll definitions using the
AocDefinedThreshold stitcher.

Table 39: Sub-Attributes of the StitcherInfo Attribute (3 of 5)

Sub-Attribute Type Description
Netcool/Precision IP 3.6 Monitoring and RCA Guide 81

Chapter 3: MONITOR Configuration Tool
ClearThreshold String This sub-attribute of StitcherInfo is only used in poll definitions using
the AocDefinedThreshold stitcher.

Once the Threshold has been broken for a particular entity, subsequent
polls evaluate the ClearThreshold, if present. If the ClearThreshold
is breached (evaluates true), then a Clear event will be sent for the entity.

If no ClearThreshold is specified, a Clear event will be sent as soon as the
Threshold evaluates false for a subsequent poll on the same entity.

This attribute uses the same syntax as the Threshold attribute. For more
information on the Threshold attribute, see Defining a Threshold Condition
for SNMP Polling on page 83.

ClearDescription String This sub-attribute of StitcherInfo is only used in poll definitions using
the AocDefinedThreshold stitcher.

The description that is included in the Clear event generated by the stitcher.
For example:

ClearDescription = 'Problem was with interface
eval(text,"&SNMP.VALUE.ifNAME").',

Table 39: Sub-Attributes of the StitcherInfo Attribute (4 of 5)

Sub-Attribute Type Description
Netcool/Precision IP 3.6 Monitoring and RCA Guide82

Editing Poll Definitions
Defining a Threshold Condition for SNMP Polling

When used with the AocDefinedThreshold stitcher, the Threshold field defines a condition that,
if it evaluates true, results in an event being sent. The Threshold field accepts simple arithmetic rules,
boolean operators, and IP to Long datatype conversion. Table 40 shows all the available operators and gives
examples of their use.

AdditionalVarbinds List This sub-attribute of StitcherInfo is only used in poll definitions using
the AocDefinedThreshold stitcher.

Defines further SNMP variables to be retrieved in the event of the
Threshold being breached. The definition must include the name of the
variable to be retrieved. Optionally, the index of the previously retrieved
SNMP variable to be used to define the specific piece of data required can be
included. These further SNMP variables, once retrieved, are available for use
in other attributes of the poll definition by using the eval language.

For more information on using the eval language with the
AocDefinedThreshold stitcher, see Extended Eval Language Support for
SNMP Threshold Polling on page 92.

IndexExtractions List This sub-attribute of StitcherInfo is only used in poll definitions using
the AocDefinedThreshold stitcher.

Assigns specified bits from the index of an SNMP request to a variable.
IndexExtractions contains the following variables:

• Name. The name of the variable to which the bits are assigned.

• Varbind. The SNMP varbind from the index of which the bits are
extracted.

• IndexDigit. Where an SNMP request index is multiple digits long,
IndexDigit specifies which digit the bits are extracted from.

• Bits. Specifies either a single bit or a bit range.

The following example creates a variable called RouteInfo, and assigns it
route information from bits five to eight of the SNMP variable
ipRouteNextHop.

IndexExtractions = [{ Name = "RouteInfo" , Varbind =
'ipRouteNextHop', IndexDigit = 1, Bits = '5-8' }]

Table 40: Operators Available in the Threshold Field (1 of 2)

Operator Example

Plus (1 + 2)

Minus (4 - 2)

Table 39: Sub-Attributes of the StitcherInfo Attribute (5 of 5)

Sub-Attribute Type Description
Netcool/Precision IP 3.6 Monitoring and RCA Guide 83

Chapter 3: MONITOR Configuration Tool
Multiplication (5 * 3)

Division (10 / 2)

Modulus (8 % 3)

Power (10 POW 3)

Log (Ln 5)

IP to Long datatype conversion (IpToLong("1.2.3.4"))

Bitwise AND (5 & 3)

Note that bitwise operations can only be applied to integer values.

Bitwise (5 | 3)

Bitwise Exclusive OR (5 ^ 3)

Boolean OR ((eval(int, '&SNMP.VALUE.ifSpeed') > 10000) OR
(eval(int, '&SNMP.VALUE.ifSpeed') < 100))

Boolean AND ((eval(int, '&SNMP.VALUE.ifSpeed') > 10000) AND
(eval(int, '&SNMP.VALUE.ifOperStatus') !=2))

Boolean NOT (NOT((eval(int,'&SNMP.VALUE.ifOperStatus') = 1))

Equal (eval(int, '&SNMP.VALUE.ifOperStatus') = 1)

Not equal (eval(int, '&SNMP.VALUE.ifOperStatus') != 1)

Less than (eval(int, '&SNMP.VALUE.ifSpeed') < 100)

Greater than (eval(int, '&SNMP.VALUE.ifSpeed') >100)

Less than or equal (eval(int, '&SNMP.VALUE.ifSpeed') <= 100)

Greater than or equal (eval(int, '&SNMP.VALUE.ifSpeed') >= 100)

Like (eval(text, '&RECORD.ExtraInfo->m_IfDescr') LIKE 'Gigabit.*'
)

Not Like (eval(text, '&RECORD.ExtraInfo->m_IfDescr') NOT LIKE
'Loopback.*')

Table 40: Operators Available in the Threshold Field (2 of 2)

Operator Example
Netcool/Precision IP 3.6 Monitoring and RCA Guide84

Editing Poll Definitions
Editing Attribute Containing Filters

To add a filter to an attribute, click the Filter button. The Filter Builder window is displayed. The Filter
Builder window for the Scope field is shown in Figure 13.

Figure 13: The Filter Builder as it Appears when Editing the Scope Attribute
Netcool/Precision IP 3.6 Monitoring and RCA Guide 85

Chapter 3: MONITOR Configuration Tool
If you are editing an attribute other than Scope the Filter Builder window has the same appearance, except
that it does not have the filter detail area on the left. An example Filter Builder window for the Threshold
attribute is shown in Figure 14.

The operation of the Filter Builder window for poll definitions is the same as the Filter Builder window used
to modify the instantiate rules for a class. For a description of the operation of the Filter Builder window,
see Modifying the Instantiate Rule for a Class on page 64.

Figure 14: The Filter Builder Without the Filter Detail Console
Netcool/Precision IP 3.6 Monitoring and RCA Guide86

Planning your Classes
3.8 Planning your Classes

Although scalability and extensibility are fundamental principles of the AOCs, it is still important that you
give some thought to the structure and hierarchy of your classes before you begin to create additional AOCs.
Some key points to consider when planning your classes are:

• A child class automatically inherits the instantiate rules of its parent class when it is created by the
MONITOR Configuration tool. If the instantiate rules for that parent class change, however, the
children are not dynamically updated (because inherited instantiation rules can be locally
overridden). Therefore, if you want instantiation rules to be inherited beneath a given level in the
hierarchy you must attribute them to the parent class before you create any child classes.

• Classes do not inherit the instantiate rules of their new parents if they are moved to a different
location in the hierarchy. It is therefore important to plan your class structure before you begin to
define your classes.

• Should a device match the instantiate rule of more than one AOC, it instantiates to the class in the
hierarchy that is deepest and furthest left. The position of a given AOC in the hierarchy is determined
alphabetically. For example, Bay comes before Cisco.

There is a risk that more than one instantiate rule at the same level can match. Where possible you should
try to use instantiate rules that are mutually exclusive at any given level in your AOC hierarchy to avoid this
problem.
Netcool/Precision IP 3.6 Monitoring and RCA Guide 87

Chapter 3: MONITOR Configuration Tool
Netcool/Precision IP 3.6 Monitoring and RCA Guide88

4. Stitcher_Rules.fm August 8, 2006

Chapter 4: Stitchers Used for Polling

This chapter describes the stitcher rules unique to the polling agents, complete with an explanation of the
required input and output for each. It also gives an explanation of scope within monitoring stitchers and
deconstructs an example stitcher file to show the relationship between the poll definitions, stitcher rules and
scope.

This appendix contains the following sections:

• Introduction to Stitchers on page 90

• Monitoring Stitchers on page 91

• Stitcher Rules on page 104

• Creating and Editing Stitchers on page 116

• Example Poll Definition and Stitcher on page 122
Netcool/Precision IP 3.6 Monitoring and RCA Guide 89

Chapter 4: Stitchers Used for Polling
4.1 Introduction to Stitchers

Stitchers are versatile programs used throughout Netcool/Precision IP to retrieve and manipulate data. A
large number of stitchers are used in the discovery process, and stitchers are also vital to the polling process.
This section describes the monitoring stitchers used in the polling process, and all references here to stitchers
should be understood as referring to monitoring stitchers. The discovery stitchers are described in the
Netcool/Precision IP Discovery Configuration Guide.

Stitchers can be precompiled or text-based. Precompiled stitchers cannot be modified by the user, however,
their functioning can be controlled by defining their input through the poll definitions. Precompiled
stitchers are stored in NCHOME/precision/monitor/lib and have the filename suffix .so.

Note: NCHOME is the environment variable that contains the path to the Netcool Suite home directory. For
information on how this environment variable varies with platform, see Operating System Considerations on
page 9.

Text-based stitchers can be edited. They are located in the
NCHOME/precision/monitor/stitchers directory and have the filename suffix .stch.
Precompiled stitchers may have alternative text-based versions. These are contained in
NCHOME/precision/monitor/stitchers and have the filename extension .txt. If you want
an alternative text-based stitcher to be used instead of a precompiled stitcher, you need to change the
filename extension of the text-based stitcher from .txt to .stch, and change the name to match the
name specified in the poll definition.

For example, if you wanted DefaultPing.txt to be run instead of
libPollerStitcherDefaultPing.so, you must rename DefaultPing.txt to
DefaultPing.stch.

Stitcher rules are procedures which can be called from within the stitcher. The stitchers are written in
Netcool/Precision IP’s own stitcher language, and use OQL (a programming language unique to
Netcool/Precision IP, based on SQL) to interact with component databases.
Netcool/Precision IP 3.6 Monitoring and RCA Guide90

Monitoring Stitchers
4.2 Monitoring Stitchers

The polling definitions supplied with Netcool/Precision IP use the monitoring stitchers. This section
describes each of the stitchers.

Poll Definition Attributes

The following attributes of the poll definitions are mandatory for all stitchers:

• PollName

• PollStatus

• AgentName

• AgentKey

• StitcherName

• StitcherInfo

The StitcherInfo attribute is compulsory and must be present in any poll definition, however, it may
not necessarily have any sub-attributes defined.

The Scope attribute is optional. If it is excluded the poll definition passes all types of device. The Scope
attribute only applies to stitchers that have been executed by ncp_m_timedstitcher and
ncp_m_visionary.

The poll definition attribute descriptions are not included in the following sections. For more information
on poll definition attributes, see Attributes of the Poll Definitions on page 75.

The following sections describe the stitchers, including the poll definition attributes they use.

Note: Mandatory poll definition attributes are not listed.

Precompiled Stitchers

This section describes the precompiled stitchers. This section also identifies any alternative text-based
versions of precompiled stitchers.
Netcool/Precision IP 3.6 Monitoring and RCA Guide 91

Chapter 4: Stitchers Used for Polling
SNMP Threshold Polling

The libPollerStitcherAocDefinedThreshold.so stitcher is used to perform SNMP
threshold polling. The stitcher is described in Table 41.

This stitcher uses unique extensions to the eval statement within some of the poll definition attributes, as
described below.

Extended Eval Language Support for SNMP Threshold Polling

When used with the AocDefinedThreshold stitcher, the following poll definition attributes can make
use of an extended subset of the eval language:

• Threshold

• Description

• ClearThreshold

• ClearDescription

Table 41: Overview of the libPollerStitcherAocDefinedThreshold Stitcher

Name libPollerStitcherAocDefinedThreshold.so

Type Precompiled

Poll definition attributes used Frequency

Scope

StitcherInfo

• RuleSet

• EventName

• Varbinds

• TablePoll

• Threshold

• Description

• ClearThreshold

• ClearDescription

• AdditionalVarbinds

• IndexExtractions

Agent ncp_m_timedstitcher
Netcool/Precision IP 3.6 Monitoring and RCA Guide92

Monitoring Stitchers
You can use eval statements in the above attributes in the same way as normal eval statements, however, you
can evaluate a greater range of information. For more information on the syntax and use of the eval
statement, see the Netcool/Precision IP Discovery Configuration Guide. Use of the extended subset of the eval
statement is described in the examples below.

Note: The information you are trying to evaluate must have already been retrieved by the Varbinds or
AdditionalVarbinds poll definition attribute.

Example Evaluation of SNMP Values

The following example returns the value of the SNMP variable sysName.

eval(text, '&SNMP.VALUE.sysName')

Example Evaluation of SNMP Indices

The following example returns the value of the index of the SNMP request for the variable
ipRouteNextHop. In a table poll, this will be evaluated for every index in the table list.

eval(text, '&SNMP.INDEX.ipRouteNextHop')

Example Evaluation of Previously-Retrieved SNMP Values

The following example returns the value of the SNMP variable sysName, which was retrieved when this
poll was last run.

eval(text, '&SNMP.VALUE.OLD.sysName')

Example Evaluation of Old SNMP Indices

The following example returns the value of the index of the SNMP request for the variable
ipRouteNextHop, which was retrieved when this poll was last run. In a table
poll, this will be evaluated for every index in the table list. Note that the old index is likely to be the same as
the new index.

eval(text, '&SNMP.INDEX.OLD.ipRouteNextHop')

Example Evaluation of Entity Values

The following example returns the ObjectId from the MODEL record for the entity being polled.

eval(text, '&ENTITY.ObjectId')
Netcool/Precision IP 3.6 Monitoring and RCA Guide 93

Chapter 4: Stitchers Used for Polling
Instead of ObjectId, you can specify any of the column names in the master.entityByName
database table.

Example Evaluation of Poll Definition Values

The following example returns the frequency of the poll.

eval(text, '&POLL.Frequency')

Instead of Frequency, you can specify any of the poll definitions attribute of this poll.

Note: If you restrict the scope of this poll to a specific interface, the device is polled through that interface,
but SNMP values for each interface on the device are retrieved. If you are only interested in specific
interfaces, include a filter for the relevant interfaces within the Threshold attribute, as described in the
example below.

Example Interface Filter

If you are polling a device with many interfaces, but you are only interested in generating events for interfaces
which have ’BRI’ in the name, append a condition similar to the following to the Threshold attribute of
your poll definition:

AND eval(text,"&SNMP.VALUE.ifName") like "^BRI"

Example Polling Only Managed Interfaces

You can perform SNMP polls which exclude from polling interfaces automatically tagged for exclusion at
discovery time.

The discovery component which tags interfaces for exclusion from polling is the
TagManagedEntities stitcher, and is described in the Netcool/Precision IP Discovery Configuration
Guide. This discovery stitcher stores interfaces to be excluded from polling in the m_ExtraInfo field for
the main node, within m_UnmanagedInterfaces, using the format: [<ifIndex1>,
<IfIndex2>, <IfIndexN>], where the IfIndices are the ifIndices of the interfaces you do
not want the system to monitor.

Use the snmpLinkState2 poll definition together with the AocDefinedThreshold stitcher to
exclude from polling interfaces automatically tagged for exclusion at discovery time.

Note: The snmpLinkState2 poll definition provides an alternative to the the snmpLinkState poll
definition.
Netcool/Precision IP 3.6 Monitoring and RCA Guide94

Monitoring Stitchers
The snmpLinkState2 poll definition is off by default. To enable this poll definition, set PollStatus
stitcher to 1.

By default, the poll definition to operate on all chassis (main node) entities. Scope is defined as follows:

Scope = 'EntityType = 1 and Contains is not null and IsActive = 1',

The Threshold attribute references entity attributes populated by the TagManagedEntities
discovery stitcher. The Threshold attribute is evaluated once for each instance of the varbinds encountered.
In this case, an instance is an interface. The section of interest follows:

[1] (
[2] (eval(text,"&ENTITY.ExtraInfo->m_UnmanagedInterfaces") = NULL)
[3] OR
[4] (NOT eval(int,"&SNMP.INDEX.ifAdminStatus") IN (eval(list type

int,"&ENTITY.ExtraInfo->m_UnmanagedInterfaces")))
[5])

For reasons of efficiency, in a typical deployment, the unmanaged interfaces are listed. If this list is not
present (line 2), then Netcool/Precision IP assumes that events can be generated for all interfaces. If the list
is present (line 4), then Netcool/Precision IP can only generate events for those interfaces not present in the
list.

The Threshold test works as follows: an event is only generated when an interface is not up
(ifOperStatus!= up(1)), but should be (ifAdminStatus = up(1)). When this occurs an
event is generated with Severity set to 3, and Description set as follows:

Description = 'Link down: eval(text,"&SNMP.VALUE.ifName") (
"eval(text,"&SNMP.VALUE.ifDescr")")',

Note: You may wish to remove the reference to ifName, as this MIB object is not supported on all device
types.

Detecting Interface Flapping

The libPollerStitcherDefaultFlap.so stitcher is used to detect flapping. Flapping is a
condition where a device or interface connects to and then disconnects from the network repeatedly in a
short space of time. The stitcher sends an event if more than 5 linkUp and linkDown trap pairs have
been received in a 60 second time period. Only LinkUp and LinkDown traps should be named in
KnownTraps in the poll definition. The stitcher is described in Table 42.

Table 42: Overview of the libPollerStitcherDefaultFlap Stitcher (1 of 2)

Name libPollerStitcherDefaultFlap.so

Type Precompiled
Netcool/Precision IP 3.6 Monitoring and RCA Guide 95

Chapter 4: Stitchers Used for Polling
The AlternativeDefaultFlap.txt stitcher is functionally identical to
libPollerStitcherDefaultFlap.so.

Generic Trap Reporting

The libPollerStitcherDefaultTrap.so stitcher provides generic trap reporting. It takes the
trap name and description from the trap, and all other information from the poll definitions, and sends an
event when a trap is received. The agent executable ncp_m_trapstitcher, which runs this stitcher,
uses the attributes in AgentControl to determine whether or not to run the stitcher for a particular trap.

Any varbinds sent as part of the trap are added to the ExtraInfo field of the event. If an appropriate
definition exists in the MIB files, the varbind name is resolved and its text representation is used. If the
definition does not exist, the OID value is used. The stitcher is described in Table 43.

Poll definition attributes used AgentControl

• OmitTraps

• KnownTraps

• UnknownTrapHandling

StitcherInfo

• RuleSet

• EventName

• CorrelateBy

Agent _timedstitcher

Table 43: Overview of the libPollerStitcherDefaultTrap Stitcher (1 of 2)

Name libPollerStitcherDefaultTrap.so

Type Precompiled

Table 42: Overview of the libPollerStitcherDefaultFlap Stitcher (2 of 2)
Netcool/Precision IP 3.6 Monitoring and RCA Guide96

Monitoring Stitchers
The AlternativeDefaultTrap.txt stitcher is functionally identical to
libPollerStitcherDefaultTrap.so.

Ping Polling

The libPollerStitcherDefaultPing.so stitcher runs ICMP polls on devices to check their
availability. By default, the poll times out after five seconds, and a device is not repolled if a poll fails. These
values can be overridden using the TimeOut and Retries attributes of the poll definitions. The stitcher
sends an event if the poll fails, or if the poll succeeds, having previously failed for a particular device. The
stitcher is described in Table 44.

The AlternativeDefaultPing.txt stitcher is functionally identical to
libPollerStitcherDefaultPing.so.

Poll definition attributes used AgentControl

• OmitTraps

• KnownTraps

• UnknownTrapHandling

StitcherInfo

• EventName

• RuleSet

• Severity

• CorrelateBy

Agent ncp_m_trapstitcher

Table 44: Overview of the libPollerStitcherDefaultPing Stitcher

Name libPollerStitcherDefaultPing.so

Type Precompiled

Poll definition attributes used FrequencyStitcherInfo

RuleSet

TimeOut

Retries

EventName

Agent ncp_m_timedstitcher

Table 43: Overview of the libPollerStitcherDefaultTrap Stitcher (2 of 2)
Netcool/Precision IP 3.6 Monitoring and RCA Guide 97

Chapter 4: Stitchers Used for Polling
Polling for Administrative or Operational Status Mismatches

The libPollerStitcherSnmpLinkStatus.so timed stitcher polls at intervals of five minutes by
default. It compares the administrative and operational status of interfaces between polls. This stitcher is
used as a backup to the monitoring of linkUp and linkDown traps. The stitcher is described in Table 45.

Table 46 shows the events which are generated as a result of the changes in interface status. Additionally, an
event is generated when a poll fails to return any data, and a Clear event is generated when a poll to the same
device subsequently succeeds. The stitcher is described in Table 46.

Table 45: Overview of the libPollerStitcherSnmpLinkStatus Stitcher

Name libPollerStitcherSnmpLinkStatus.so

Type Precompiled

Poll definition attributes used Frequency

StitcherInfo

• RuleSet

• EventName

Agent ncp_m_timedstitcher

Table 46: Events Generated by the libPollerStitcherSnmpLinkStatus Stitcher (1 of 2)

Previous poll Current poll Event generated

Administrative
status

Operational
status

Administrative
status

Operational
status

Up Up Up Down "The interface has gone down."

Severity = Minor

Up Up Down Up No event generated.

Up Up Down Down No event generated.

Up Down Up Up "The interface has come up."

Severity = Clear

Up Down Down Up "The interface has come up,
although it should be down."

Severity = Clear

Up Down Down Down "An administrator has confirmed
that the interface should be
down."

Severity = Clear

Down Up Up Up No event generated.
Netcool/Precision IP 3.6 Monitoring and RCA Guide98

Monitoring Stitchers
The AlternativeSnmpLinkStatus.txt stitcher is functionally similar to
libPollerStitcherSnmpLinkStatus.so. However, instead of polling a main node to find out
the status of that node’s interfaces, this stitcher can poll individual interfaces. This is useful if, for example,
you wanted to poll only those interfaces on a node which had a particular ifType.

Note: This stitcher uses AgentKey+. For Information on the use of the plus character after the
AgentKey attribute, see Attributes of the Poll Definitions on page 75.

Text-Based Stitchers

The following stitchers are referenced by the poll definitions. You can change their parameters through the
poll definitions, and you can, if necessary, alter their logic by editing their text files.

Monitoring Cisco Power Supplies

The CiscoPowerSupply.stch stitcher sends an event if there is a problem with a Cisco power supply
unit (PSU), or sends a restore event if a previous problem with the PSU is no longer detected. The stitcher
monitors any Cisco device which supports the MIB variables chassisPs1Status and
chassisPs1Status. The stitcher is described in Table 47.

Down Up Up Down "The interface has gone down."

Severity = Minor

Down Up Down Down No event generated.

Down Down Up Up No event generated.

Down Down Up Down "An administrator has instructed
the interface to come up, but it
hasn’t."

Severity = Minor

Down Down Down Up No event generated.

Table 46: Events Generated by the libPollerStitcherSnmpLinkStatus Stitcher (2 of 2)

Previous poll Current poll Event generated

Administrative
status

Operational
status

Administrative
status

Operational
status

Table 47: Overview of the CiscoPowerSupply Stitcher (1 of 2)

Name CiscoPowerSupply.stch

Type Text-based
Netcool/Precision IP 3.6 Monitoring and RCA Guide 99

Chapter 4: Stitchers Used for Polling
Performing Simple Threshold Polling Against a Specified MIB Variable

The DefaultSnmpThreshold.stch stitcher is a generic stitcher which performs an SNMP
GetBulk request on a device and tests the returned variables against an SNMP evaluation condition. You
should use this stitcher only if you require different functionality to that provided by the precompiled
stitcher AocDefinedThreshold. The evaluation condition is defined in the StitcherInfo section
of the poll definition. The stitcher is described in Table 48.

Poll definition attributes used Frequency

StitcherInfo

• EventName

• RuleSet

• MibVariable

• Severity

Agent ncp_m_timedstitcher

Table 48: Overview of the DefaultSnmpThreshold Stitcher

Name DefaultSnmpThreshold.stch

Type Text-based

Poll definition attributes used Frequency

StitcherInfo

• Description

• RuleSet

• EventName

• Severity

• RestoreEvent

• PollFailEvent

• MibVariable

• Comparison

• Threshold

Agent ncp_m_timedstitcher

Table 47: Overview of the CiscoPowerSupply Stitcher (2 of 2)
Netcool/Precision IP 3.6 Monitoring and RCA Guide100

Monitoring Stitchers
Checking for Syslog Messages

The DefaultSyslog.stch stitcher is used to monitor system messages. It sends events based on
updates to system files. The stitcher is described in Table 49.

Analysis of IP Traffic Statistics

The SnmpIPMonitoring.stch stitcher performs statistical analysis of IP traffic on a device. It polls at
intervals, and compares the values returned by the last poll to the values returned by the current poll. It
calculates the amount of traffic in the interval between polls, as well as the number of various errors that have
occurred, including fragmented packets.

Fragmenting packets can represent a major performance issue. Routers that are fragmenting packets (with
or without errors) may be doing so as a result of misconfigured PDU (Packet Data Unit) sizes between the
link and the network layer or mismatched PDU sizes between routers.

The stitcher sends an event if any of the following conditions are met:

• The percentage of inbound packets with errors is greater than five percent of the total number of
inbound packets.

• The percentage of outbound packets with errors is greater than five percent of the total number of
outbound packets.

• Any routing errors have occurred.

Table 49: Overview of the DefaultSyslog Stitcher

Name DefaultSyslog.stch

Type Text-based

Poll definition attributes used AgentControl

• FileNames

• FieldNames

• Reread

• RegExps

• Delimiter

• Mappings

StitcherInfo

• Threshold

• Severity

Agent ncp_m_syslogstitcher
Netcool/Precision IP 3.6 Monitoring and RCA Guide 101

Chapter 4: Stitchers Used for Polling
• Any errors have occurred due to the device being unable to fragment packets, or due to the device
being unable to reassemble fragmented packets.

• The device has itself fragmented any packets.

The stitcher is described in Table 50.

Monitoring Traffic on Each Interface

The SnmpLinkMonitoringAllInterfaces.stch stitcher monitors interface traffic. It polls
devices at intervals, measuring the traffic across interfaces and the number of errors between polls.

The stitcher sends an event if any of the following conditions are met:

• Errors on inbound packets are greater than ten percent of the total inbound packets.

• Errors on outbound packets are greater than ten percent of the total outbound packets.

• Total errors constitute more than ten percent of the total number of packets.

• The device is not of a valid type (For example, the device has no interfaces).

The stitcher is described in Table 51.

Table 50: Overview of the SnmpIPMonitoring Stitcher

Name SnmpIPMonitoring.stch

Type Text-based

Poll definition attributes used Frequency

StitcherInfo

• RuleSet

Agent ncp_m_timedstitcher

Table 51: Overview of the SnmpLinkMonitoringAllInterfaces Stitcher

Name SnmpLinkMonitoringAllInterfaces.stch

Type Text-based

Poll definition attributes used Frequency

StitcherInfo

• RuleSet

Agent ncp_m_timedstitcher
Netcool/Precision IP 3.6 Monitoring and RCA Guide102

Monitoring Stitchers
Monitoring TCP Traffic for a Device

The SnmpTCPMonitoring.stch stitcher monitors TCP (Transmission Control Protocol) traffic on a
device. It polls a device at intervals and measures the amount of traffic and the number of errors between
polls.

The stitcher generates an event if any of the following conditions are met:

• Inbound errors are greater than five percent of the total inbound traffic.

• Outbound errors are greater than five percent of the total outbound traffic.

• Total errors are greater than five percent of the total traffic (including inbound and outbound
segments, and retransmitted segments).

• No SNMP results are returned.

The stitcher is described in Table 52.

Checking for Possible Device Reboots

The SysUpTime.stch stitcher polls devices to find out how long they have been up. It stores the
sysUpTime from the previous poll and compares it to the current value. If the current value is less than
the previous one, the device must have restarted in the meantime, and an event is sent to this effect. The
stitcher is described in Table 53.

Table 52: Overview of the SnmpTCPMonitoring Stitcher

Name SnmpTCPMonitoring.stch

Type Text-based

Poll definition attributes used Frequency

StitcherInfo

• RuleSet

Agent ncp_m_timedstitcher

Table 53: Overview of the SysUpTime Stitcher

Name SysUpTime.stch

Type Text-based

Poll definition attributes used Frequency

StitcherInfo

• RuleSet

Agent ncp_m_timedstitcher
Netcool/Precision IP 3.6 Monitoring and RCA Guide 103

Chapter 4: Stitchers Used for Polling
4.3 Stitcher Rules

This section provides the information about the text-based stitcher rules. It also provides examples of the
usage of each stitcher rule. This section must be read in conjunction with stitcher language appendix in the
Netcool/Precision IP Discovery Configuration Guide. This section also assumes that you are familiar with the
polling process as described in Chapter 2: Network Polling on page 21.

Stitcher Rules for MONITOR and DISCO

The stitcher rules that are common to DISCO and the polling agents are described in Table 54. These
stitcher rules are not tagged with a prefix.

Stitcher Rules for Polling Agents

This section describes the stitcher rules that are unique to the polling agents. The stitcher rules are:

• PollerDoesTableExist

• PollerDoPing

• PollerGetLocalIpAddr

• PollerGetPollDef

• PollerGetTriggerRecord

• PollerInsertRecords

• PollerIntDeltaRecordList

• PollerMibTextToOid

• PollerSnmpGetBulk

• PollerGetLocalEntityName

• SendEvent

These stitcher rules are tagged with a prefix, for example PollerDoPing.

Table 54: Stitcher Rules Common to DISCO and the Polling Agents

Stitcher Rule Name Description

ExecuteStitcher Invokes the execution of a named stitcher.

ExecuteOQL Declares stitcher rules that are written in OQL. Anything between the parentheses following the
ExecuteOQL rule must be valid OQL syntax.

RetrieveOQL Creates a list of the data type RecordList generated by OQL statements.
Netcool/Precision IP 3.6 Monitoring and RCA Guide104

Stitcher Rules
PollerDoesTableExist

The PollerDoesTableExist stitcher rule determines whether a database and table exists. The
stitcher rule is described in Table 55.

Example

In the following example, the integer variable exists is specified in the call to the rule. This variable can
then be tested to determine whether the database table exists.

text dbName = "mojo";
text tlbName = "events";
int exists = PollerDoesTableExist(dbName, tblName);

The values dbName and tblName are defined for mojo.events.

PollerDoPing

The PollerDoPing stitcher rule pings a device. If the device is uncontactable, the error condition is
extracted from the ICMP datagram and is available for use in the stitcher. The stitcher rule is described in
Table 56.

Table 55: PollerDoesTableExist Stitcher Rule Description

Variable Description

Rule PollerDoesTableExist(dbName, tblName)

Input The variables dbName and tblName. These must be predefined. See example usage.

Output Integer variable which is used to determine whether the database exists. False (0), True (1).

Table 56: PollerDoPing Stitcher Rule Description (1 of 2)

Variable Description

Rule PollerDoPing(ipAddress, TimeOut, retries)
Netcool/Precision IP 3.6 Monitoring and RCA Guide 105

Chapter 4: Stitchers Used for Polling

Example

The following example assigns the output of the PollerDoPing rule to the variable pingResults,
which is of type RecordList. To use pingResults, you must assign integer and text variables, as
shown below.

RecordList pingResults = PollerDoPing(ipAddress, TimeOut, retries);

foreach (pingResults)
{

int myResult = eval(int,’&pingResults’);
text myString = eval(int,’&errorString’);

}

Input ipAddress—specifies the IP address of the network entity to be polled. This is generally extracted
from the associated entity using an eval statement.

TimeOut—specifies the time to wait for a response from a device. If a device does not respond within
the timeout period the device is repolled based on the next input, retries.

retries—specifies the number of times the device should be repolled if the poll is unsuccessful.
After this, the poll is considered to have failed.

Output A single record, which consists of two columns, pingResults and errorString:

• pingResults—an enumerated type which specifies the result of the ping poll. It can have the
following values:

– $Success = 0

– $TimeOut = 1

– $MultipleRetries = 2

– $ErrorReply = 3

– $AwaitingResponse = 4

• errorString—contains the ICMP error string returned in the datagram.

Table 56: PollerDoPing Stitcher Rule Description (2 of 2)

Variable Description
Netcool/Precision IP 3.6 Monitoring and RCA Guide106

Stitcher Rules
PollerGetLocalIpAddr

The PollerGetLocalIpAddr stitcher rule retrieves the IP address of the device on which the polling
agent is running (the polling location). The stitcher rule is described in Table 57.

In previous versions of Netcool/Precision IP, the root cause analysis process required the IP address of the
machine on which the stitcher agent is running. In the current release of Netcool/Precision IP the root cause
analysis process uses the entity name stored in the network topology database. The EntityName can be
obtained using the PollerGetLocalEntityName stitcher rule, as described in
PollerGetLocalEntityName on page 114.

Example

In the following example, the IP address output by the rule is assigned to the text variable agentAddr.
The IP address can then be extracted from this variable by using an eval statement of the form
eval(text,'agentAddr').

text agentAddr = PollerGetLocalIpAddr();

PollerGetPollDef

The PollerGetPollDef stitcher rule retrieves the poll definition associated with a device and allows
the poll definition to be available in the scope of the stitcher. The stitcher rule is described in Table 58.

Table 57: PollerGetLocalIpAddr Stitcher Rule Description

Variable Description

Rule PollerGetLocalIpAddr

Input Not required, see example usage.

Output Text variable specifying the IP address of the polling agent.

Table 58: PollerGetPollDef Stitcher Rule Description

Variable Description

Rule PollerGetPollDef()

Input Not required, see example usage.

Output A single record, which consists of columns based on the polldefCache.polldefs table in the
MONITOR stitcher agent configuration files.
Netcool/Precision IP 3.6 Monitoring and RCA Guide 107

Chapter 4: Stitchers Used for Polling

Example

The following example assigns the value of the PollStatus column.

RecordList pollDef = PollerGetPollDef();

foreach(pollDef)
{

int myStatus = eval(int,‘&PollStatus’);
}

delete(pollDef);

This example, uses the RecordList rule. To extract the column values from the RecordList, you
need to assign them to variables.

PollerGetTriggerRecord

The PollerGetTriggerRecord stitcher rule retrieves the trigger record for a non-timed agent, for
example, the trap trigger record, and allows it to be available in the scope of the stitcher. The stitcher rule is
described in Table 59.

Note: Only non-timed agents, such as, ncp_m_trapstitcher and ncp_m_syslogstitcher,
have trigger records.

Example

The following example uses a column from a Trap agent trigger record.

RecordList triggerRecord = PollerGetTriggerRecord();

foreach(triggerRecord)
{

int myTrapType = eval(int,‘&TrapType’);
}

This example, uses the RecordList rule. To extract the column values from the RecordList, you
need to assign them to variables.

Table 59: PollerGetTriggerRecord Stitcher Rule Description

Variable Description

Rule PollerGetTriggerRecord()

Input Not required, see example usage.

Output A single record, which consists of columns based on the triggers.despatch table in the
MONITOR stitcher agent configuration files.
Netcool/Precision IP 3.6 Monitoring and RCA Guide108

Stitcher Rules
PollerInsertRecords

The PollerInsertRecords stitcher rule inserts the contents of a list into a database table. This
stitcher should not be used for inserting information into an external database, for example,
class.activeclasses. It should be used for inserting information into a database which has already
been defined within the stitcher. For information on creating databases and tables, see the Netcool/Precision
IP Discovery Configuration Guide. The stitcher rule is described in Table 60.

Example

The following example defines the dbName and tblName in the first section of the stitcher file.

text dbName="DeviceA";
text tblName="tcpHistory";

The RecordList used is called snmpResults. This would previously have been retrieved using a rule
such as PollerSnmpGetBulk.

The format of the rule for the RecordList snmpResults is.

PollerInsertRecords(snmpResults, dbName, tblName);

The output is a database with the following format.

DeviceA.tcpHistory.tcpSegments
DeviceA.tcpHistory.tcpErrors
DeviceA.tcpHistory.tcpInSegments
DeviceA.tcpHistory.tcpInErrors
DeviceA.tcpHistory.tcpOutSegments
DeviceA.tcpHistory.tcpOutErrors

Table 60: PollerInsertRecords Stitcher Rule Description

Variable Description

Rule PollerInsertRecords(myList, dbName, tblName)

Input myList—the name of the RecordList you want to insert.

dbName—the name of the target database.

tblName—the name of the target table.

The dbName and tblName should already be defined in the stitcher file, as shown in the example
below.

Output As a result of running this rule, the specified RecordList is inserted into the specified database table.
Netcool/Precision IP 3.6 Monitoring and RCA Guide 109

Chapter 4: Stitchers Used for Polling
In the above output the first component of each row is the database name, for example, DeviceA. The
second component is the table name. for example, tcpHistory, and the third component is the name of
an SNMP variable from the snmpResults list, for example, tcpSegments. Immediately after the
contents of the list snmpResults have been inserted into the database, the list is deleted or discarded and
is no longer available.

PollerIntDeltaRecordList

The PollerIntDeltaRecordList stitcher rule determines the difference between two lists of
SNMP variables. Typically these lists would have been retrieved from the network using the
PollerSnmpGetBulk rule. The stitcher rule is described in Table 61.

Example

The following example performs a delta function to allow statistical analysis to be conducted.

deltaResults = PollerIntDeltaRecordList(historyResults,snmpResults);

A threshold condition (or watermark calculation) can then be evaluated and as a consequence an event
generated and inserted into mojo.events. Additionally, it is possible to include some of the information
from the statistical analysis in a list, which can be included in the ExtraInfo column of the generated
event record.

Table 61: PollerIntDeltaRecordList Stitcher Rule Description

Variable Description

Rule PollerIntDeltaRecordList(historyResults, snmpResults)

Inputs The inputs to PollerIntDeltaRecordList are two lists of SNMP variables. For example,
historyResults and snmpResults. These inputs can be written generically as
PollerIntDeltaRecordList(a,b). The input lists must be consistent in terms of length and the
variables they contain. The stitcher rule PollerIntDeltaRecordList only determines the
difference between identical lists. If the lists are dissimilar in any way the result is undefined.

Output The result or output of PollerIntDeltaRecordList follows the logic b - a and is a list of variables
which contains the differences between b and a. In the code table below, the output is assigned to a
list called deltaResults. Additionally, the list "a" gets deleted from the symbol table and is no
longer available after the subtraction function has been undertaken.
Netcool/Precision IP 3.6 Monitoring and RCA Guide110

Stitcher Rules
PollerMibTextToOid

The PollerMibTextToOid stitcher rule converts an SNMP text variable to its OID equivalent. The
stitcher rule is described in Table 62.

Example

The following example assigns the OID of the SNMP variable SysDescr to the text variable
MySnmpVar.

text MySnmpVar = PollerMibTextToOid(SysDescr);

PollerSnmpGetBulk

The PollerSnmpGetBulk stitcher rule retrieves SNMP data from network devices, using an SNMP
GetBulk request. This allows the total amount of SNMP traffic generated when downloading non-scalar (or
large numbers of individual scalar) SNMP variables to be reduced.

The rule can be used to undertake a table poll, for instance, to retrieve values from a device and its interfaces.
The column names in the returned record are defined by the list of SNMP input variables made in the
stitcher rule call to PollerSnmpGetBulk. The values for each of these column names are the values
retrieved from each device and its relevant interfaces. The final column name in the returned record is called
m_Indices and is a list of indices associated with the interfaces (ifIndex) on the polled device.

!!
Warning: It is important that the correlation between variables is correct. If the first n variables in the
variable list are non-repeater variables, the value put into the nonRepeaters argument must be n.
Non-repeater variables are scalar MIB variables such as sysUpTime and ifNumber.

Table 62: PollerMibTextToOid Stitcher Rule Description

Variable Description

Rule PollerMibTextToOid(MIBText)

Input MIBText—the name of an SNMP variable, for example, SysDescr.

Output A text variable containing the OID of the SNMP variable.
Netcool/Precision IP 3.6 Monitoring and RCA Guide 111

Chapter 4: Stitchers Used for Polling
The stitcher rule is described in Table 63.

Example

A device with three interfaces is being polled for the following variables: sysDescr, sysContact,
ifInUcastPkts and ifInNUCastPkts. The poll definition in the AOC which has led to this
stitcher rule being triggered includes the section.

StitcherInfo = {
TimeOut = 5000,

Table 63: PollerSnmpGetBulk Stitcher Rule Description

Variable Description

Rule PollerSnmpGetBulk(ipAddress, communitySuffix, [list of SNMP variables],
nonRepeaters, maxRepetitions, appendageString, TimeOut, retries)

Inputs ipAddress—specifies the IP address of the network entity that is being polled. This is generally
extracted from the associated entity via an eval statement.

communitySuffix—provides an option to add a suffix to the SNMP community string. Default is
NULL.

[list of SNMP variables]—Specifies the list of SNMP variables and their values to retrieve
from the network.

nonRepeaters—specifies the number of standalone SNMP variables, i.e., those that are only
retrieved once. For instance, if nonRepeaters was equal to 2 then a single value would be retrieved
from the network for the first two SNMP variables in the list - in the example usage of
PollerSnmpGetBulk which follows, these would be sysDescr and sysContact. The remaining
variables in the list are treated as non-scalar (repeating) variables, for which either the total number of
instances or maxRepetitions instances—whichever is smaller—are retrieved.

maxRepetitions—specifies the maximum number of instances of a non-scalar SNMP variable
which is downloaded when performing the SNMP GetBulk request. For example, if ‘ifOperStatus’
were being retrieved from a device with 100 entries in the ifTable, and maxRepetitions were set
to 50, only the first 50 instances of ‘ifOperStatus’ from the ifTable would be retrieved.

If you set maxRepetitions to -1, all instances of each specified repeater variable are retrieved. As a
result, you do not need to know the number of instances each column variable has in advance of
making the PollerSnmpGetBulk call.

TimeOut—specifies the time to wait for a response from a device. If a device does not respond during
the time out period the device is repolled based on the next input, retries.

retries—specifies the number of times the device should be repolled.

Output The output from PollerSnmpGetBulk is a list of records. The column names of such records are
dependant on the list of SNMP variables specified in the stitcher rule call PollerSnmpGetBulk, for
instance, snmpResults. However, the final column name in the returned record is always called
m_Indices, which is a list of indices associated with the interfaces (ifIndex) on the polled device.
Netcool/Precision IP 3.6 Monitoring and RCA Guide112

Stitcher Rules
Retries = 2,
}

One way the call to the rule PollerSnmpGetBulk might be executed in the stitcher is as follows.

// get the IP address of the entity being processed by this Stitcher
text ipAddress = eval(text,‘&Address(2)’)
int TimeOut = 0;
int retries = 0;
int maxRepetitions = 0;
int nonRepeaters = 2;
// set maximum repetitions to the actual number of interfaces
maxRepetitions = ExecuteStitcher('SnmpGetIfNumber');
RecordList pollDef = PollerGetPollDef(); // get poll definition
foreach(pollDef) {

TimeOut = eval(int, ‘&StitcherInfo->TimeOut’);
retries = eval(int, ‘&StitcherInfo->Retries’);

}
RecordList snmpResults=PollerSnmpGetBulk(

ipAddress,
NULL, // appendage to the community string
[

'sysDescr',
'sysContact',
'ifInUcastPkts',
'ifInNUcastPkts'

],
nonRepeaters, // number of non repeating SNMP variables
maxRepetitions, // maximum instances of non-scalar SNMP

 // variables
NULL, // OID appendage to the SNMP variable list
TimeOut, // defined in the AOC
retries, // defined in the AOC
);

The output (snmpResults) from the above (provided the device is contactable) would resemble the
following.

sysDescr.0 = Cisco7500 Router;
sysContact.0 = Alfred Sanders;
ifInUcastPkts.2 = 223256;
ifInNUCastPkts.2 = 124001;
ifInUcastPkts.6 = 234500;
ifInNUCastPkts.6 = 127780;
ifInUcastPkts.9 = 453012;
ifInNUCastPkts.9 = 321544;
m_Indices = ['2', '6', '9'];
Netcool/Precision IP 3.6 Monitoring and RCA Guide 113

Chapter 4: Stitchers Used for Polling
The PollerSnmpGetBulk rule treats quoted strings as literal values and unquoted strings as stitcher
variables, which should contain an appropriate value for the parameter position they occupy. For example,
TimeOut in the above call is resolved to the integer 5000, whereas ‘sysDescr’ is one of the SNMP
variables which the PollerSnmpGetBulk rule attempts to retrieve.

PollerGetLocalEntityName

The PollerGetLocalEntityName stitcher rule attempts to retrieve the EntityName field of the
topology entry that represents the machine on which the stitcher agent is running.

The stitcher rule determines the IP address of the machine then executes the following query against
MODEL.

select EntityName from master.entityByName where EntityType = 1 AND
(
Address(2) = ipAddr OR
ipAddr IN (ExtraInfo->m_AssocAddress)
)

;

Where ipAddr is the IP address of the machine on which the stitcher agent is running.

SendEvent

The SendEvent stitcher rule is used to send events, in the form of OQL inserts, from the monitoring
process to the virtual database mojo.events in the MONITOR probe.

To ensure the event is sent to the MONITOR probe the service command line option must be set to
Monitor2ObjServ. If no service has been specified the event is sent to the database mojo.events in
AMOS. Micromuse does not recommend the delivery of events directly to AMOS using this stitcher rule.

The stitcher rule is described in Table 64.

Table 64: SendEvent Stitcher Rule Description

Variable Description

Rule SendEvent(OQL insert)

Input A standard OQL database insert (for information on using OQL to make inserts into databases, see the
Netcool/Precision IP Discovery Configuration Guide). In the stitchers, the inserts are to the virtual
database mojo.events in the MONITOR probe.

Output As a result of running this rule, an event is sent to the MONITOR probe, then to the ObjectServer, then
to the gateway, and finally to AMOS for event correlation.
Netcool/Precision IP 3.6 Monitoring and RCA Guide114

Stitcher Rules

Example

The following example shows an insert ping fail event using the SendEvent rule.

SendEvent(
"
insert into mojo.events
(

EventId,
EntityName,
ClassName,
Description,
EventName,
RuleSet,
EventType,
Severity,
AssignedTo,
Acknowledged,
AgentAddress,
EventGroupId

)
values
(

0,
eval(text,'&EntityName'),
eval(text, '&ClassName'),
eval(text,'CAT(`Ping fail for `,&Address(2),` `,$errorString)'),
eval(text, '$eventName'),
eval(text, '$ruleSet'),
0,
3,
'',
0,
eval(text,'$localAddr'),
0

);
"

);
Netcool/Precision IP 3.6 Monitoring and RCA Guide 115

Chapter 4: Stitchers Used for Polling
4.4 Creating and Editing Stitchers

This section provides the information required to create or edit text-based stitchers. This section must be
read in conjunction with stitcher language appendix in the Netcool/Precision IP Discovery Configuration
Guide.

!!
Warning: Micromuse recommends that creating and editing stitchers is only undertaken by advanced users
of Netcool/Precision IP. You must be familiar with all aspects of network polling and Netcool/Precision IP.

Before creating or editing a stitcher you should:

• Ensure the polling functionality you require is not already available using the existing stitchers. It is
easier to customize a poll definition than edit a stitcher.

• Back up your existing stitchers.

• Reduce the risk of errors by copying and modifying an existing stitcher.

• Ensure your new stitcher has a unique name and write a new poll definition referencing that name.

• Add the new poll definition to whichever classes you require to run the new poll.

• Store a copy of your stitcher in the NCHOME/precision/monitor/stitchers directory.

Stitcher Scope

This section explains ampersand usage and scope within the context of MONITOR stitchers. General
information on ampersand usage and scope is provided in the Netcool/Precision IP Discovery Configuration
Guide.
Netcool/Precision IP 3.6 Monitoring and RCA Guide116

Creating and Editing Stitchers
In the context of scope, the following types of records are especially important:

• The model instance, also known as the model record. When an agent executable starts a polling stitcher,
it passes the stitcher information about the device to be polled (or from which a trap has been
received). This information is in the form of a record from MODEL’s master.entityByName
table, the schema of which can be found in the Netcool/Precision IP Discovery Configuration Guide.
This information does not need to be retrieved, as it is automatically available.

• The poll definition. Every stitcher which is initially called by a polling agent is controlled by a poll
definition. Some stitchers are called from within another stitcher, in which case they may, or may not,
reference a poll definition. The poll definition must be brought into the scope of the stitcher using
the stitcher rule PollerGetPollDef.

• The trigger record. This is relevant to non-timed stitchers only. The trigger record is contained in the
triggers.dispatch database table of the relevant agent schema. The agent executable first
populates the table with information relating to either the trap received or the syslog message found,
and then starts the stitcher. For the triggers.dispatch schema, see Chapter 2: Network
Polling on page 21. The trigger record must be brought into the scope of the stitcher using the
PollerGetTriggerRecord stitcher rule.

The model instance can be referred to as being at the top level of scope available for reference in the stitcher
(in the global scope). Any further levels of scope defined in the stitcher are inside the global scope. Variables
in the global scope are usually referenced from within the stitcher using a single ampersand (unless they are
referenced from within further levels of scope), for example:

 text ipAddress = eval(text,‘&Address(2)’);

In the above code extract, the internal text variable ipAddress is defined (using an eval statement) as
equal to the text variable Address(2). Address(2) is from the record in the global scope, and since
no further scopes have yet been defined, it is referenced with a single ampersand. In general, one ampersand
is used to reference values from the record currently in scope (also known as the local scope). Internal variables,
by contrast, do not require ampersands.

Further levels of scope within the global scope are defined by being enclosed in a pair of curly braces { }.
Scope is most commonly defined in stitchers by using foreach([variable]){} loops.

There are usually several levels of scope defined within stitchers. To reference outside each level you require
an extra ampersand. For example:

StitcherRules
{
...
 RecordList polldef = PollerGetPollDef();
 foreach(polldef)
 {
 AgentName = eval(text, ‘&AgentName’);
 text ipAddress=eval(text,‘&&Address(2)’);
Netcool/Precision IP 3.6 Monitoring and RCA Guide 117

Chapter 4: Stitchers Used for Polling
In this example code extract, the AgentName variable only requires one ampersand, because it references
the record currently in scope (the poll definition).

The ipAddress variable (which when referenced in the first example required only one ampersand) now
requires two ampersands, one to reference outside the current scope, and one to reference the global scope.

Any number of scopes can be defined in a stitcher, although nesting several scopes inside each other is not
recommended for performance reasons. The number of ampersands required to reference a given record
depends entirely on the relative positions of the record being referenced and where the record is being
referenced from. The simplified example below shows some possible combinations.

// assume polldef and trigger record have been retrieved

&variable1 // This references the global scope
 foreach(polldef)
 {
 &variable2 //This references the polldef
 &&variable3 //This references the global scope
 foreach(triggerRecord)
 {
 &variable4 //This references the triggerRecord
 &&variable5 //This references the polldef
 &&&variable6 //This references the global scope
 }
 }
 foreach(snmpResults)
 {
 &variable7 //This references the snmpResults
 &&variable8 //This references the global scope
 }

In the above example, it is assumed that the poll definition and trigger record have been brought into the
scope of the stitcher using the appropriate stitcher rules (PollerGetPollDef and
PollerGetTriggerRecord).

It is important to note that neither the polldef nor the triggerRecord can be referenced from
within the foreach(snmpResults) loop. This is because as far as the foreach(snmpResults)
loop is concerned, the records in the foreach(polldef) and foreach(triggerRecord) loops
either have not yet been created or have been destroyed.

Stitcher Structure

All text-based stitchers have the following basic form:

UserDefinedStitcher
{

Netcool/Precision IP 3.6 Monitoring and RCA Guide118

Creating and Editing Stitchers
StitcherTrigger
{
}

PollerStitcherExterns
{
}

StitcherRules
{
}

}

Each of the sections shown above is only used once in any one stitcher.

UserDefinedStitcher

This section declares that the stitcher is a text-based stitcher. It must be included at the beginning of every
stitcher in the form given above. The rest of the stitcher is enclosed within its curly braces.

StitcherTrigger

Declares when the stitcher is to start. This section is used for the discovery stitchers. All monitoring stitchers
are called on demand when the polling agent needs them. This section should therefore be left blank, as
shown above.

PollerStitcherExterns

This optional section defines external variables to be used in the stitcher.

Declared in the PollerStitcherExterns section, these variables are assigned their specified value
the first time that the stitcher is run. Once they have been declared in the PollerStitcherExterns
section, external variables can then have different values assigned to them in the next section, the
StitcherRules section, in the same way as local variables.

External variables are not destroyed when the stitcher finishes, but are stored until the polling agent
responsible for running the stitcher is stopped. For this reason, external variables can be created on one
execution of a stitcher and used again on the next execution. This makes them useful for a variety of tasks
including delta polling.

The code table below gives an example declaration of external variables:

PollerStitcherExterns
{

extern int failedLastTime=0;
extern int multipleReplies=0;

}

Netcool/Precision IP 3.6 Monitoring and RCA Guide 119

Chapter 4: Stitchers Used for Polling
Stitcher Rules

Local variables are declared only in the StitcherRules section of the stitcher. They are stored until the
stitcher finishes or until they are deleted.

The stitcher rule contains the logic of the stitcher. This usually takes the following broad form:

StitcherRules
{
// declaration of local variables

// retrieval of information using Stitcher rules

// processing and evaluation of information

// generation of event if appropriate
}

Tip: To check your stitcher for parse errors, you can run ncp_timedstitcher in debug mode and
examine the debug output. The following example shows one way to do this.

Example: Running ncp_timedstitcher in debug mode

If you have defined a poll using your stitcher with the key MYSTITCHER, you can use the following
command to run ncp_timedstitcher in full debug mode and pipe the output to a file named
mydebug.out:

ncp_m_timedtstitcher -domain TEST -latency 100000 -service Monitor2ObjServ -debug 4
-key MYSTITCHER >&mydebug.out&

Note that this command uses csh under UNIX. You should use the appropriate equivalent for your system.

Poll Definitions and Stitchers

Monitoring stitchers can reference zero or more variables from the poll definitions. This is the normal way
to control the polling process. The polling processes are described in Default Polling Process Descriptions on
page 29.

Before the poll definitions can be used in a stitcher, they must be brought into scope. This is done using the
PollerGetPollDef rule. The following example shows an extract of the poll definition which led to
this stitcher being called.

// extract from poll definition

TimeOut = 12000,
AgentName = "ncp_m_timedstitcher",
Netcool/Precision IP 3.6 Monitoring and RCA Guide120

Creating and Editing Stitchers
StitcherInfo =
{

EventName = "PingFail",
RuleSet='pingFailToCorrelatedRootCause'

}

The example below shows how the above variables are referenced in the stitcher.

// extract from StitcherRules section of Stitcher

int timeOut=5000; // declare local variables and set their
text ruleSet=""; // default values

RecordList pollDef = PollerGetPollDef(); // get the poll def

foreach(pollDef) // referencing the poll def
{

timeOut=eval(int,'&TimeOut'); // assign TimeOut from poll def to
// local variable timeOut

ruleSet=eval(text,'&StitcherInfo->RuleSet'); // assign RuleSet from
//poll def to local variable

}

delete(pollDef); // good practice to delete as no longer wanted

In this example you need to use the object identifier -> to reference the RuleSet variable because it is
contained within the object StitcherInfo. Objects within StitcherInfo do not have their data
types defined in the poll definitions. Their data types must be defined in the stitcher. In this example
RuleSet is defined as data type text.
Netcool/Precision IP 3.6 Monitoring and RCA Guide 121

Chapter 4: Stitchers Used for Polling
4.5 Example Poll Definition and Stitcher

This section contains an example stitcher which illustrates the use of rules, scope and structure. It also
includes the use of the poll definition interface.

Poll description

This poll checks whether a device has recently rebooted. It retrieves the SNMP variable sysUpTime,
which is defined as the number of milliseconds since a device was last initialized, and compares it to the value
of sysUpTime which was retrieved on the last poll. If the second value is smaller than the first, this
indicates that the device may have rebooted in the meantime, and an event is generated to warn the user of
this.

Poll definition

The poll definition which runs this poll appears in the AOC as follows.

{
PollName="SysUpReBoot",
AgentName="ncp_m_timedstitcher",
AgentKey="SNMP",
Frequency=300,
StitcherName="SysUpTime",
StitcherInfo={
 RuleSet='DefaultSNMPRuleSet',
 }
},

Stitcher

The stitcher which is called to perform this poll is shown, broken down into sections. The first section shows
the start of the stitcher file and the extern variable declarations.

UserDefinedStitcher
{

StitcherTrigger // called on demand
{

}

PollerStitcherExterns
{

extern int lastSysUpTime = -1; // used to compare between polls
}

Netcool/Precision IP 3.6 Monitoring and RCA Guide122

Example Poll Definition and Stitcher
The next section shows the local variables being declared, and information being retrieved from the poll
definition.

StitcherRules
{

text ipAddress = eval(text,'&Address(2)'); // declare local variables

text entityName = eval(text,'&EntityName'); // & here refers to the
text className = eval(text,'&ClassName'); // model instance

text agentAddr = PollerGetLocalIPAddress(); // assign using rule

text ruleset = 'NOT_SET'; // default value

RecordList polldef = PollerGetPollDef(); // get poll def

foreach(polldef) // referencing poll def, get RuleSet from StitcherInfo
{

ruleset = eval(text, '&StitcherInfo->RuleSet'); // & is poll def
}

delete(polldef); // poll def no longer needed

int nonRepeaters = 1; // needed as input to rule

The next section shows the SNMP poll being conducted.

RecordList snmpResults = PollerSnmpGetBulk // poll for SysUpTime using rule
// assign result of poll to snmpResults

(// parentheses contain inputs to rule
ipAddress, // ipAddress is an already-defined local variable
NULL,
['sysUpTime'],
nonRepeaters,
NULL,
NULL,
NULL,
NULL

);

int sysUpTime=-1; // sysUpTime can never be -1 from poll; note that this
 // declares the local variable sysUpTime and does NOT
 // overwrite the poll results because it is not within the
 // foreach(snmpResults) loop

The next section shows the calculation which is used to decide whether or not to send an event.

foreach(snmpResults) // referencing poll results
{

sysUpTime = eval(int,'&sysUpTime'); // & is snmpResults
// eval statement means poll result is assigned to local variable so
// can now be manipulated
Netcool/Precision IP 3.6 Monitoring and RCA Guide 123

Chapter 4: Stitchers Used for Polling
if(lastSysUpTime<>-1) // remember lastSysUpTime is extern variable
// representing results of last poll; if this is

{ // the first poll it will = -1
int deltaSysUpTime = 0;

// calculate difference in sysUpTime

deltaSysUpTime=sysUpTime-lastSysUpTime;

// If deltaSysUpTime < 0 an event needs to be generated

The next section shows the event being generated, subject to the condition set up in the last section being
met.

if(deltaSysUpTime<0)
{ // generate event

SendEvent(
"insert into mojo.events // mojo.events = AMOS Events Database
(// list of columns

EventId,
EntityName,
ClassName,
Description,
EventName,
EventType,
Severity,
AssignedTo,
Acknowledged,
AgentAddress,
RuleSet,
EventGroupId

)
values
(

0, // $ must be used when referring to
eval(text,'$entityName'), // Stitcher variables in eval
eval(text,'$className'), // statements
eval(text,'CAT(`Possible Reboot condition: old sysUpTime

- `,$lastSysUpTime,` new sysUpTime - `,$sysUpTime)'),
'snmpSysUpTime',
0,
3,
'',
0,
eval(text,'$agentAddr'),
eval(text,'$ruleset'),
0

);
"

Netcool/Precision IP 3.6 Monitoring and RCA Guide124

Example Poll Definition and Stitcher
);
} // end event generation

} // end if(lastSysUpTime<>-1) loop

The final section ends the stitcher.

// store value of SysUpTime from this poll to be used in the next poll

lastSysUpTime=sysUpTime;

} // end foreach(snmpResults) loop

delete(snmpResults);

} // end StitcherRules

} // end Stitcher
Netcool/Precision IP 3.6 Monitoring and RCA Guide 125

Chapter 4: Stitchers Used for Polling
Netcool/Precision IP 3.6 Monitoring and RCA Guide126

5. Monitor_Probe.fm August 8, 2006

Chapter 5: The MONITOR Probe and
Netcool/OMNIbus Probes

This chapter describes the functionality of the MONITOR probe, its role in the monitoring process, and
how to start and configure it. It also describes how to configure other Netcool probes to populate the fields
in the ObjectServer required for root cause analysis.

This chapter contains the following sections:

• Overview of the MONITOR Probe on page 128

• Starting the MONITOR Probe on page 129

• The Probe and the Monitoring Subsystem on page 131

• Configuring the MONITOR Probe on page 132
Netcool/Precision IP 3.6 Monitoring and RCA Guide 127

Chapter 5: The MONITOR Probe and Netcool/OMNIbus Probes
5.1 Overview of the MONITOR Probe

The MONITOR probe, nco_p_ncpmonitor, is designed to enable events generated by the
Netcool/Precision IP polling agents to be sent to the ObjectServer. This ObjectServer sends these events,
and other network events, through the Event Gateway, to AMOS for root cause analysis. The MONITOR
probe is installed in the NCHOME/probes directory.

Note: NCHOME is the environment variable that contains the path to the Netcool Suite home directory. For
information on how this environment variable varies with platform, see Operating System Considerations on
page 9.

Note: The Netcool/Knowledge Library is a set of rules files written to a common standard. It enables
Netcool/OMNIbus probes to work seamlessly with Netcool/Precision IP without any need for
configuration. The Netcool/Knowledge Library is available with your Netcool/OMNIbus installation. It is
also available as a download on the Micromuse Support Site.
Netcool/Precision IP 3.6 Monitoring and RCA Guide128

Starting the MONITOR Probe
5.2 Starting the MONITOR Probe

Micromuse recommends that the MONITOR probe is started using the domain process controller CTRL.
The use of CTRL to automatically manage processes is described in the Netcool/Precision IP Discovery
Configuration Guide. There are no dependencies for starting the MONITOR probe.

!!
Warning: If you are using Netcool/Precision IP with failover, you must start the MONITOR probe using
CTRL. The CTRL process checks the status of the MONITOR probe and uses this information to generate
the Health Check events used by the failover process. For more information on failover, see the
Netcool/Precision IP Installation and Deployment Guide.

Manually Starting the MONITOR Probe

On Microsoft Windows, Netcool/Precision IP components can be run as processes or as Windows services.
Components run as processes are started from a command prompt in the same way as on UNIX platforms.
For more information on running components as Windows services, see the Netcool/Precision IP Discovery
Configuration Guide.

To manually run the MONITOR probe enter the command nco_p_ncpmonitor.

The command line options for nco_p_ncpmonitor are:

nco_p_ncpmonitor -domain DOMAIN_NAME [-buffer] [-buffersize] [-capturefile] [
-debug DEBUG] [–help] [-latency LATENCY] [-manager] [-mapfile]
[-messagelevel] [-messagelog] [-name] [-nobuffer] [-noraw] [-propsfile]
[-raw] [-rulesfile] [-server] [-version]

Table 65 describes the command line options for nco_p_ncpmonitor.

Table 65: nco_p_ncpmonitor Command Line Options (1 of 2)

Option Explanation

-domain DOMAIN_NAME The name of the domain under which the Precision Server processes are running.

-buffer Turn on alert buffering.

-buffersize The size of the alert buffer to use.

-capturefile Raw capture file to write to.

-debug DEBUG The level of debugging output (1-4, where 4 represents the most detailed output).

–help Prints out a synopsis of all command line options for the component.

If specified, the component is not started.
Netcool/Precision IP 3.6 Monitoring and RCA Guide 129

Chapter 5: The MONITOR Probe and Netcool/OMNIbus Probes
-latency LATENCY The maximum time in milliseconds (ms) that the component waits to connect to another
Precision Server process via the messaging bus. This option is useful for large and busy
networks where the default settings can cause the process to assume that there is a
problem when in fact the communication delay is a result of network traffic.

-manager Manager name.

-mapfile Map file to read.

-messagelevel Lowest level of message to be put into the message log.

-messagelog Message log file to use for ObjectServer errors.

-name Name of probe.

-nobuffer Turn off alert buffering.

-noraw Turn off raw capture mode.

-propsfile Properties file to use.

-raw Turn on raw capture mode.

-rulesfile Rules file to use.

-server ObjectServer to connect to.

-version Prints the version number of the component.

If specified, the component is not started even if –version is used in conjunction with
other arguments.

Table 65: nco_p_ncpmonitor Command Line Options (2 of 2)

Option Explanation
Netcool/Precision IP 3.6 Monitoring and RCA Guide130

The Probe and the Monitoring Subsystem
5.3 The Probe and the Monitoring Subsystem

In order for the MONITOR stitcher agents to send events to the MONITOR probe, the stitcher agents
must be started using the command line parameter -service Monitor2ObjServ.

In normal operation, the stitcher agents are started as required by MONITOR. The stitcher agents are
started with the same -service parameter that was used to start MONITOR.

If you are using CTRL to start MONITOR as a managed process, you must ensure that the OQL inserts to
the ncp_ctrl schema file CtrlSchema.cfg specify the -service Monitor2ObjServ
parameter.

You can also start MONITOR manually using the following command line option:

ncp_monitor -service Monitor2ObjServ

For example, to manually start the ncp_m_timedstitcher stitcher agent, so that all events are sent to
the probe, use a command line similar to the following:

ncp_m_timedstitcher -service Monitor2ObjServ

For more information about command line options for ncp_monitor, see Starting MONITOR and
Polling Agents on page 22.
Netcool/Precision IP 3.6 Monitoring and RCA Guide 131

Chapter 5: The MONITOR Probe and Netcool/OMNIbus Probes
5.4 Configuring the MONITOR Probe

You can configure the operation of the probe using any of the following:

• Using the command line arguments described in Manually Starting the MONITOR Probe on
page 129.

• Configuring the properties file.

• Configuring the map file.

• Configuring the rules file.

The properties (nco_p_ncpmonitor.prop), map (nco_p_ncpmonitor.map), and rules
(nco_p_ncpmonitor.rules) files are installed in the NCHOME/probes directory.

Properties File

A subset of the options available by using the command line arguments described above can be specified in
the properties file. The properties file, in its unedited form, lists all the properties supported by the probe.
To edit a property, you must remove the comment from the relevant line. An example line, which has been
commented out, is shown below.

MapFile : "NCHOME/probes/arch/nco_p_ncpmonitor.map"

To specify a different location for the map file, remove the comment and edit the line, as in the example
below.

MapFile : "/home/johnsmith/nco_p_ncpmonitor.map"

In the above example, arch should be replaced by the name of the architecture on which the product is
installed, for example, solaris2. For more information on configuring properties files, see the
Netcool/OMNIbus Administration Guide.
Netcool/Precision IP 3.6 Monitoring and RCA Guide132

Configuring the MONITOR Probe
Map File

The probe converts events from the format in which they are generated by the polling agents to the format
in which they are stored by the ObjectServer in a two-stage process. In the first stage, which is configured in
the map file, the attributes of the event are converted to tokens accessible in the rules file. The example below
shows the variable ifIndex(1), which is contained in the object ExtraInfo, being mapped to the
token $IfIndex.

$IfIndex = ExtraInfo->ifIndex(1)

You may need to edit the map file if your monitoring stitchers have been configured to use non-standard
variables in generated events. Micromuse does not recommend storing complex data such as lists in the
ExtraInfo object. For more information on the monitoring stitchers, see Chapter 4: Stitchers Used for
Polling on page 89.

Rules File

The second stage of the format conversion of events is governed by the rules file. In this stage, tokens are
mapped to fields in the ObjectServer. This conversion is slightly more complex than the simple mapping of
the first stage. The probe uses the rules file to perform some conditional processing on the tokens in order
to convert them to fields in the ObjectServer. Configuring the rules file is only recommended for users with
an advanced knowledge of Netcool/OMNIbus. For more information about the ObjectServer, see the
Netcool/OMNIbus Administration Guide.
Netcool/Precision IP 3.6 Monitoring and RCA Guide 133

Chapter 5: The MONITOR Probe and Netcool/OMNIbus Probes
Netcool/Precision IP 3.6 Monitoring and RCA Guide134

6. Omnibus_Event_Gateway.fm August 8, 2006

Chapter 6: The Event Gateway

This chapter describes how to start and configure the Netcool/Precision IP Event Gateway. It also includes
descriptions of the gateway databases.

This chapter contains the following sections:

• Introduction to the Event Gateway on page 136

• Operation of the Gateway on page 137

• Starting the Event Gateway on page 140

• The Gateway Databases on page 142

• Sending Events to AMOS on page 153
Netcool/Precision IP 3.6 Monitoring and RCA Guide 135

Chapter 6: The Event Gateway
6.1 Introduction to the Event Gateway

The Event Gateway provides a bidirectional interface between Netcool/Precision IP and
Netcool/OMNIbus. The gateway enables you to send events from the Netcool/OMNIbus ObjectServer to
the AMOS component of Netcool/Precision IP in order to perform root cause analysis.

The gateway also updates the ObjectServer with events from AMOS, and enriches events in the
ObjectServer with network topology information from MODEL.

The gateway is used in conjunction with the MONITOR probe (described in Chapter 5: The MONITOR
Probe and Netcool/OMNIbus Probes on page 127) to process events from the Netcool/Precision IP polling
agents. The polling agents must be configured to send events to the probe, which then sends the events to
the ObjectServer. From the ObjectServer they can be processed by the gateway.
Netcool/Precision IP 3.6 Monitoring and RCA Guide136

Operation of the Gateway
6.2 Operation of the Gateway

On startup, the gateway downloads the topology from MODEL and stores it in an OQL database, described
in The Gateway Databases on page 142.

Note: As the topology database may be large, you can use the command line options to configure the
percentage of data that is cached on disk and the percentage that is stored in memory. Increasing the size of
the disk cache reduces the memory used, however this may also reduce the throughput of the gateway.

Once the topology has been downloaded, the gateway listens for events from the ObjectServer. When events
are received, the gateway uses the configuration information defined in the configuration file to filter the
events. All matching events are enriched with topology data from MODEL. A number of these events are
also mapped by the gateway to the AMOS database.

Event Gateway Process

The flow of event data through the gateway is shown in Figure 15.

Figure 15: The Process Flow of Events Through the Gateway
Netcool/Precision IP 3.6 Monitoring and RCA Guide 137

Chapter 6: The Event Gateway
The path an event follows through the gateway is:

1. When an event is received from the ObjectServer, the gateway checks that the event passes the
EventFilter defined in the config.nco2ncp database table. If the event does not pass the
filter, it is discarded.

2. The gateway finds the corresponding event mapping by searching the entries in the
config.precedence table for an entry that matches the EventId.

Note: If no event mapping is found, the event is processed using the generic-event event map.
This event map looks up the device relevant to the event in the topology and then updates the event
in the ObjectServer. In this case, the event is not sent to AMOS for root cause analysis.

3. The gateway finds the location of the device that is referenced by the event in the topology model.
For example, it may identify the IP address of the device. The gateway applies the PolledEntity
topology filter from the event mapping to the entry in the topoCache.entityByName database
table for the incoming event. If no topology entity is found, the event is discarded.

4. The event is now enriched with topology data from MODEL using the incoming EntityName.

5. The gateway determines whether the event should be sent to AMOS to perform RCA.

If the SendForRCA field from the event map is set to 0, the event is not sent to AMOS for RCA.
The enriched event is sent to the ObjectServer.

If the SendForRCA field from the event map is set to 1, the event is sent to AMOS.

6. The gateway finds the location of the polling device in the topology model. For example, the gateway
may find the IP address of the poller. The gateway applies the PollerEntity topology filter from
the event map found in step 2 to the incoming event. If the polling device cannot be found, the event
cannot be used for RCA. The enriched event is sent to the ObjectServer.

7. If the event is to be sent for RCA, an OQL insert statement is generated using the fields defined in the
config.nco2ncp database table. This insert statement is sent to AMOS.

8. The gateway listens for updates from AMOS to obtain the result of the RCA calculation when it is
completed. The AMOS event is tested against the EventFilter column of the
config.ncp2nco table. If the event does not pass this filter it is discarded.

9. At this point the event can be further enriched with data, this time using the outgoing
EntityName. This is important for trap and syslog events as the incoming EntityName for
these events is often the main node (chassis) entity. AMOS, however, is able to search through the
topology and set the outgoing EntityName to the interface entity within this main node.

10. If the AMOS event passes, the gateway generates an ObjectServer update based on the field mapping
in the config.ncp2nco database table and sends the update back to the ObjectServer.
Netcool/Precision IP 3.6 Monitoring and RCA Guide138

Operation of the Gateway
Synchronizing the ObjectServer and the AMOS Database

The mojo.events database in AMOS should always contain a subset of the ObjectServer database. The
AMOS database is always considered the slave database to the ObjectServer. To ensure consistency between
the two databases, the gateway periodically checks the data is synchronized. You can change the frequency
of this check by changing the SyncCheckPeriod value in the config.defaults gateway database.
A value of 0 disables the synchronization checking.

When the gateway checks the synchronization of the databases, it checks that all the events in AMOS are
also in the ObjectServer. If events are present in AMOS but not the ObjectServer, warning messages are
generated in the Event Gateway log file.

The databases are also re-synchronized if no events are present in AMOS. This ensures that the databases
automatically re-synchronize if AMOS is restarted.

Forcing the Gateway to Synchronize

To force the gateway to synchronize at any time, enter the following SIGHUP command:

kill -HUP PID

Where PID with the process ID of the gateway.

In addition to synchronizing, the gateway checks the timestamp on its configuration file. If the configuration
file has been modified, the gateway reads this file again in order to adapt to any configuration changes.

Updating the Topology Cache

The gateway listens for updates to the Netcool/Precision IP MODEL database on the Rendezvous MODEL
update subject. This ensures that the copy of the topology database in the gateway remains synchronized
with the Netcool/Precision IP topology database.
Netcool/Precision IP 3.6 Monitoring and RCA Guide 139

Chapter 6: The Event Gateway
6.3 Starting the Event Gateway

Micromuse recommends that the Event Gateway is started using the domain process controller CTRL. The
use of CTRL to automatically manage processes is described in the Netcool/Precision IP Discovery
Configuration Guide.

On Microsoft Windows, Netcool/Precision IP components can be run as processes or as Windows services.
Components run as processes are started from a command prompt in the same way as on UNIX platforms.
For more information on running components as Windows services, see the Netcool/Precision IP Discovery
Configuration Guide.

!!
Warning: If you are using Netcool/Precision IP with failover, you must start the Event Gateway using
CTRL. The CTRL process checks the status of the Event Gateway component and uses this information to
generate the Health Check events used by the failover process. For more information on failover, see the
Netcool/Precision IP Installation and Deployment Guide

Manually Starting the Event Gateway

To manually start the Event Gateway, run the ncp_ncogate command.

The command line options for ncp_ncogate are:

ncp_ncogate –domain DOMAIN_NAME [-debug DEBUG] [-latency LATENCY] [-cachesize
SIZE_IN_MB] [-cachepercent PERCENTAGE_OF_CACHE_IN_MEMORY] [-server OBJECTSERVER]
[-backup] [-help] [-version]

The command line options are described in Table 66.

Table 66: ncp_ncogate Command Line Options (1 of 2)

Option Description

-domain DOMAIN_NAME The name of the domain under which to run ncp_ncogate.

-debug DEBUG The level of debugging output (1-4), where 4 represents the
most detailed output.

-latency LATENCY The maximum time in milliseconds (ms) that ncp_ncogate
waits to connect to another Precision Server process. This option
is useful for large and busy networks where the default settings
can cause processes to assume that there is a problem when in
fact the communication delay is a result of network traffic.

The default value is 10000. If you specify a lower value on the
command line, it is increased to 10000.

-cachesize SIZE_IN_MB Specifies the size of the cache in megabytes (MB).
Netcool/Precision IP 3.6 Monitoring and RCA Guide140

Starting the Event Gateway
-cachepercent
PERCENTAGE_OF_CACHE_IN_MEMORY

Enables you to specify the ratio of the cache that is resident in
memory to the cache that is resident on the hard disk.

The ratio that you specify depends on the amount of memory
that exists on the host machine and the number of processes it is
running. The default value is 100% memory cache.

Increasing the size of the disk cache reduces the memory
consumption of the gateway, however, it can cause the gateway
to run more slowly.

-server OBJECTSERVER The name of the ObjectServer to connect to. This defaults to
NCOMS if no server is specified.

-backup Configures the Event Gateway to operate in backup mode. For
information on failover, see the Netcool/Precision IP Installation
and Deployment Guide.

-help Prints out the command line options for ncp_ncogate then
exits.

-version Prints the version number of ncp_ncogate then exits.

Table 66: ncp_ncogate Command Line Options (2 of 2)

Option Description
Netcool/Precision IP 3.6 Monitoring and RCA Guide 141

Chapter 6: The Event Gateway
6.4 The Gateway Databases

The default configuration of the gateway is suitable for the majority of systems. If you are an advanced
Netcool/Precision IP user, you can make adjustments to the configuration settings by modifying the values
inserted into the gateway config database. This database contains the configuration settings that define
the operation of the gateway. For example, you can modify the mappings that are used between
Netcool/Precision IP and Netcool/OMNIbus and the filters that determine which events are processed.

The gateway databases are:

• topoCache

• config

The following sections describe the database configuration process and the gateway databases.

Logging into the Gateway Databases Using the OQL Service Provider

To query the gateway databases, you must log into the databases using the OQL service provider and the
service name NcoGate. The following example command logs in to the NcoGate service for the gateway
running in the domain Precision, and using the username admin.

ncp_oql -domain Precision -service NcoGate -username admin

Enter the admin user password at the prompt.

Applying Configuration Changes to the Gateway

Any configuration change made to the gateway can be applied while it is running by issuing a SIGHUP
command to the gateway.

Enter the following command:

kill -HUP PID

Where PID with the process ID of the gateway.

The gateway checks the timestamp on its configuration file. If the configuration file has been modified, the
gateway reads this file again in order to adapt to any configuration changes.

The topoCache Database Schema

The topoCache database holds a copy of the MODEL topology database. This copy of the topology
database is used to enrich event records with topology information.
Netcool/Precision IP 3.6 Monitoring and RCA Guide142

The Gateway Databases
The summary information for the topoCache database schema is shown in Table 67.

Note: NCHOME is the environment variable that contains the path to the Netcool Suite home directory. For
information on how this environment variable varies with platform, see Operating System Considerations on
page 9.

The entityByName Table

The topoCache.entityByName table, described in Table 68, holds information about all the
discovered network entities.

Table 67: topoCache Database Summary

Database name topoCache

Defined in NCHOME/etc/precision/NcoGateSchema.cfg

Fully qualified database table name topoChache.entityByName

Table 68: topoCache.entityByName Table Description (1 of 3)

Column Name Constraints Data Type Description

ObjectId PRIMARY KEY

NOT NULL

UNIQUE

Long integer The unique Object ID of the network entity,
which is used to provide the value for the
NmosObjInst field in the ObjectServer.

EntityName PRIMARY KEY

NOT NULL

UNIQUE

Text Unique descriptive name of a network entity.

Address List of text List of OSI model layer 1 -7 addresses for the
entity.

Description Text Value of sysDescr MIB variable or other
suitable description of the entity.
Netcool/Precision IP 3.6 Monitoring and RCA Guide 143

Chapter 6: The Event Gateway
EntityType Externally defined
entityTypes data type

Integer Element type of the entity. Possible values are:

• 0 - Unknown.

• 1 - Chassis.

• 2 - Interface.

• 3 - Logical interface.

• 4 - Vlan object.

• 5 - Card.

• 6 - PSU.

• 7 - Subnet.

• 8 - Module.

ClassName Text Class name of network entity (if applicable).

EntityOID Text Value of sysOID MIB variable of the entity.

Status Externally defined
status data type

Integer Flag showing status of the network entity.

Security Text Password to access network entity (if
applicable).

RelatedTo List of text List of entities that are connected to the
network entity.

Contains List of text List of elements or other containers contained
in the current network entity.

UpwardConnections List of text List of containers that contain this entity.

IsActive Externally defined
boolean data type

Integer Flag indicating whether an Active Object Class
is needed.

CreateTime Time Creation time of network entity record in table.

ChangeTime Time Time of last modification to the network entity
record.

ActionType Externally defined
actions data type

Integer The type of action associated with the record.

Table 68: topoCache.entityByName Table Description (2 of 3)

Column Name Constraints Data Type Description
Netcool/Precision IP 3.6 Monitoring and RCA Guide144

The Gateway Databases
The config Database Schema

The config database is used to configure the way in which events are mapped between
Netcool/OMNIbus and Netcool/Precision IP. The config database can also be used to define filters that
restrict the events that are passed between Netcool/OMNIbus and Netcool/Precision IP.

The summary information for the config database schema is shown in Table 69.

These tables are described in the following sections.

ExtraInfo Externally defined
vblist data type

Object A list of extra information.

LingerTime NOT NULL

Default=3

Integer The linger time is used during rediscovery so
that the new topology can be merged with the
existing topology.

The value of LingerTime is decremented if
the entity is not present in the new topology.
The entity is only removed from the topology
when the value of LingerTime reaches 0.

Table 68: topoCache.entityByName Table Description (3 of 3)

Column Name Constraints Data Type Description

Table 69: config Database Summary

Database name config

Defined in NCHOME/etc/precision/NcoGateSchema.cfg

Fully qualified database table names config.defaults

config.eventMaps

config.nco2ncp

config.ncp2nco

config.failover

config.precedence
Netcool/Precision IP 3.6 Monitoring and RCA Guide 145

Chapter 6: The Event Gateway
The defaults Table

The config.defaults table, described in Table 70, contains general configuration data for the
gateway.

The eventMaps Table

The config.eventMaps table, described in Table 71, holds information specific to each kind of
Netcool/OMNIbus event that the gateway can process. The entries in this table indicate how an event from
Netcool/OMNIbus with the specified Event ID should be handled by Netcool/Precision IP.

Table 70: config.defaults Table Description

Column Name Constraints Data Type Description

SyncCheckPeriod NOT NULL Long integer Specifies (in seconds) how frequently the
gateway should check the synchronization of
AMOS and the ObjectServer.

IDUCFlushTime NOT NULL Integer The interval (in seconds) between IDUC (Insert
Delete Update Control) flushes from the
ObjectServer. The default is 1 second.

NcoAuthUserName NOT NULL Text The username to use to access the
ObjectServer when it is running in secure
mode.

NcoAuthPassword NOT NULL Text The password to use to access the
ObjectServer when it is running in secure
mode.

If necessary, you can encrypt this password
using nco_crypt and enter the encrypted
password in the configuration file.

NcpServerEntity NOT NULL Text The IP address of the polling station. Use this
field if the polling station is not in the topology
or if it is necessary to pretend that the polling
station is different from where it actually is.

Table 71: config.eventMaps Table Description (1 of 2)

Column Name Constraints Data Type Description

EventMapName PRIMARY KEY

NOT NULL

Text The name of the event map. This value is referenced by the
config.precedence table, as described on page 152.

ncpRuleName Text The AOC headrule to be applied to this event in AMOS
when performing RCA.
Netcool/Precision IP 3.6 Monitoring and RCA Guide146

The Gateway Databases
The nco2ncp Table

The config.nco2ncp table, described in Table 72, is used to filter events being passed from
Netcool/OMNIbus to Netcool/Precision IP.

ncpMainNode NOT NULL

Default=0

Integer Indicates whether the events should be mapped to the
polled entity (in the case of a ping fail) or the main node
(which is usual in the case of traps). Possible values are:

• 0 - Map the event to the polled entity

• 1 - Map the event to the main node

SendForRCA NOT NULL

Default=1

Integer Indicates whether the event should be sent to AMOS to
perform Root Cause Analysis (RCA). Possible values are:

• 0 - Do not send to AMOS. The event is enriched with
topology data (if possible) and returned to the
ObjectServer.

• 1 - Send to AMOS to perform RCA.

PolledEntity NOT NULL Text A filter to be applied to the topology database to find the
entity against which the event should be raised.

PollerEntity NOT NULL Text A filter to be applied to determine the polling location for
this event. This field may be empty if SendForRCA is set
to 0.

ExtraInfoField vblist This field allows you to append data, that is specific to the
event map, to the end of the ExtraInfo section of the
config.nco2ncp entry.

This is an optional field.

Table 72: config.nco2ncpTable Description

Column Name Constraints Data Type Description

EventFilter NOT NULL Text A filter that indicates which events should be
processed by the gateway. Only events that match
this filter are processed.

EventFieldMap Externally defined vblist
data type

Object A mapping used to generate an OQL string using
the fields in the incoming event and the topology
record.

Table 71: config.eventMaps Table Description (2 of 2)

Column Name Constraints Data Type Description
Netcool/Precision IP 3.6 Monitoring and RCA Guide 147

Chapter 6: The Event Gateway
The following example insert configures the filter and mappings for events passing from Netcool/OMNIbus
to Netcool/Precision IP.

insert into config.nco2ncp
(

EventFilter,
EventFieldMap

)
values
(

"LocalNodeAlias <> ’’",
{

EntityName = "eval(text, '&&EntityName')",
ClassName = "eval(text, '&&ClassName')",
Description = "eval(text, '&Summary')",
EventName = "eval(text, '&EventId')",
RuleName = "eval(text, '$RuleName')",
RuleSet = "TopologicalAlertCorrelation",
EventType = "eval(int, '$EVENT')",
Severity = "eval(text, '&Severity')",
AgentAddress = "eval(text, '$AgentAddress')",
CauseType = "eval(int, '$CAUSEUNKNOWN')",
NcoSerial = "eval(int, '&Serial')",
Occurred = "eval(int, '&Tally')",
ExtraInfo =
{

Precedence = "eval(int, '$Precedence')",
NmosObjInst = "eval(long, '$MainNodeObjectId')",
NmosSerial = 0

}
}

);

In the example above, the ampersand (&) is used to navigate through the scope of the records being
evaluated:

• A single ampersand accesses the Netcool/OMNIbus event record.

• A double ampersand accesses the Netcool/Precision IP topology record.

For more information about the eval statement, and the use of ampersands and scope in Netcool/Precision
IP, see the Netcool/Precision IP Discovery Configuration Guide.
Netcool/Precision IP 3.6 Monitoring and RCA Guide148

The Gateway Databases
The example insert configures the gateway to:

• Only pass Netcool/OMNIbus events to Netcool/Precision IP where the LocalNodeAlias
column of the ObjectServer record has been populated. This field provides a basis for looking up the
event in the discovered topology.

• Perform the following mapping between the ObjectServer record, the topology database and the
AMOS mojo.events database table:

– Evaluate the value of the EntityName column in topology database and insert it into, or
update, the EntityName column of the mojo.events database table.

– Evaluate the value of the ClassName column in the topology database and insert it into, or
update, the ClassName column of the mojo.events database table.

– Evaluate the value of the Summary column in the ObjectServer record and insert it into, or
update, the Description column of the mojo.events database table.

– Insert the appropriate EventName using the ObjectServer’s EventId into the EventName
column of the mojo.events database table, or update the existing value.

– Insert the appropriate RuleName (determined by the entries in the config.eventMaps
table) into the RuleName column of the mojo.events database table, or update the
existing value.

– Set the RuleSet to TopologicalAlertCorrelation.

– Insert the type of event into the EventType column of the mojo.events database table,
or update the existing value.

– Evaluate the value of the Severity column in the ObjectServer record and insert it into, or
update, the Severity column of the mojo.events database table.

– Insert the polling agent address into the AgentAddress column of the mojo.events
database table, or update the existing value.

– Set the CauseType of the event to UNKNOWN.

– Evaluate the value of the Serial column in the ObjectServer record and insert it into, or
update, the NcoSerial column of the mojo.events database table.

– Evaluate the value of the Tally column in the ObjectServer record and insert it into, or
update, the Occurred column of the mojo.events database table.

The gateway determines whether to insert a new record or update an existing one according to whether the
ObjectServer sends the event as an insert using IDUC or as an update.
Netcool/Precision IP 3.6 Monitoring and RCA Guide 149

Chapter 6: The Event Gateway
The ncp2nco Table

The config.ncp2nco table, described in Table 73, is used to filter and map events being passed from
Netcool/Precision IP to Netcool/OMNIbus.

The following example insert configures the filter and mappings for events passing from Netcool/Precision
IP to Netcool/OMNIbus.

insert into config.ncp2nco
(

EventFilter,
EventFieldMap

)
values
(

"ActionType <> 2",
{

Severity = "eval(int, '&Severity')",
NmosObjInst = "eval(int, '&ExtraInfo->NmosObjInst')",
NmosSerial = "eval(text, '&ExtraInfo->NmosSerial')",
NmosCauseType = "eval(int, '&CauseType')"
//IfDescr = "eval(text, '&&ExtraInfo->m_IfDescr')"

}
);

The foregoing example insert configures the gateway to:

• Only pass Netcool/Precision IP events to Netcool/OMNIbus where the ActionType column of
the database record in the AMOS mojo.events table is not set to 2. This ensures only new events
and updates are sent. Deletions are not sent.

• Perform the following mapping between the AMOS database and the ObjectServer record:

– Evaluate the value of the mojo.events.Severity column and use it to update the
ObjectServer Severity column.

– Evaluate the value of the NmosObjInst field in mojo.events.ExtraInfo column and
use it to update the ObjectServer NmosObjInst column.

Table 73: config.ncp2nco Table Description

Column Name Constraints Data Type Description

EventFilter NOT NULL Text A filter that indicates which events should be processed by
the gateway. Only events that match this filter are
processed.

EventFieldMap Externally defined
vblist data type

Object An object containing the mapping used to generate an
OQL update string using the fields in the incoming event
and the topology record.
Netcool/Precision IP 3.6 Monitoring and RCA Guide150

The Gateway Databases
– Evaluate the value of the NmosSerial field in mojo.events.ExtraInfo column and
use it to update the ObjectServer NmosSerial column.

– Evaluate the value of the mojo.events.CauseType column and use it to update the
ObjectServer NmosCauseType column.

• The line which has been commented in this sample fragment of code shows an example of outgoing
topology enrichment and assumes that there is an ObjectServer field in alerts.status named
IfDescr.

The mojo.events.NcoSerial column from the Netcool/Precision IP event is used to determine
which ObjectServer event is updated.

The ObjectServer update generated by the configuration described here is in the following format (the items
in angle brackets are replaced with the value evaluated from the specified column in the Netcool/Precision
IP event).

update alerts.status
set Severity = <Severity>,

NmosObjInst = <ExtraInfo->NmosObjInst>,
NmosSerial = <ExtraInfo->NmosSerial>,
NmosCauseType = <CauseType>,
Where Serial = <NcoSerial>;

The failover Table

The config.failover table contains the failover configuration and current failover state of the Event
Gateway component. The columns are described in Table 74.

Table 74: config.failover Table Description

Column Name Constraints Data Type Description

BackupGateway NOT NULL Boolean This value is true if the Event Gateway is started using the
-backup command line option. Possible values are:

• 0 - Not configured as the backup system

• 1 - Configured as the backup system

Failedover NOT NULL Boolean The failover state. Possible values are:

• 0 - Not in a failover state

• 1 - In a failover state
Netcool/Precision IP 3.6 Monitoring and RCA Guide 151

Chapter 6: The Event Gateway
The precedence Table

The config.precedence table contains the information necessary to determine which event has
precedence when multiple events occur on the same interface. The columns are described in Table 75.

Table 75: config.precedence Table Description

Column Name Constraints Data Type Description

Precedence NOT NULL Integer A number used by AMOS when there are multiple events on
the same entity within the network topology. The number is
used to determine which of the events has precedence and
therefore suppresses the other event on that interface. For
example, a link down event has a higher Precedence value
than a ping fail event and therefore the link down will
suppress the ping fail event on that interface.

The following Precedence values have special meanings:

• 0 - An event with this Precedence value cannot
become a root cause event. If an event’s Precedence
value is set to 0, then this event can only become a
symptom event or can be marked as cause unknown.

• 10000 and greater - An event with a Precedence value
greater than or equal to 10000 cannot become a
symptom event. It can only become a root cause event or
be marked as cause unknown.

EventMapName NOT NULL Text The name of the event map from the config.eventMaps
table that is used to process the event with a matching
EventId. For more information on the
config.eventMaps table, see The eventMaps Table on
page 146.

NcoEventId PRIMARY KEY

NOT NULL

Text Provides the mapping from the EventId in the
alerts.status table of the Netcool/OMNIbus
ObjectServer to the values of Precedence and
EventMapName defined in this table.
Netcool/Precision IP 3.6 Monitoring and RCA Guide152

Sending Events to AMOS
6.5 Sending Events to AMOS

The gateway sends events to AMOS by inserting events into the mojo.events database in AMOS. The
following section provides an example of an insert to mojo.events.

Example Insert

The following example shows an insert to mojo.events.

insert into mojo.events
(

EntityName,
ClassName,
Description,
EventName,
RuleSet,
RuleName,
EventType,
Severity,
AgentAddress,
CauseType,
NcoSerial,
Occurred,
ExtraInfo

)
values
(

<&&EntityName>,
<&&ClassName>,
<&Summary>,
<$EventId>,
<$RuleName>,
"TopologicalAlertCorrelation",
<$EVENT>,
<&Severity>,
<$AgentAddress>,
<$CAUSEUNKNOWN>,
<&Serial>,
<&Tally>,
{

Precedence = <$Precedence>,
NmosObjInst = <$MainNodeObjectId>,
NmosSend = 0

}
);
Netcool/Precision IP 3.6 Monitoring and RCA Guide 153

Chapter 6: The Event Gateway
This example above uses the following rules:

• The items in angle brackets preceded by & are replaced with the value calculated based on the
specified column in the ObjectServer event.

• The items in angle brackets preceded by && are replaced with the value calculated based on the
specified column in the topology database.

• The items in angle brackets preceded by $ are determined from the configuration of the
config.eventMaps table, with the exception of $EVENT and $CAUSEUNKNOWN, which
represent enumerated constants.
Netcool/Precision IP 3.6 Monitoring and RCA Guide154

7. RCA_Engine.fm August 8, 2006

Chapter 7: Root Cause Analysis

This chapter describes AMOS, the root cause analysis component of Netcool/Precision IP. It also describes
the AMOS databases and the event correlation rules in the AOC extensions.

This chapter contains the following sections:

• Introduction to Root Cause Analysis on page 156

• Starting AMOS on page 166

• AMOS Databases on page 168

• The Event Correlation Rules on page 173

• TopologicalAlertCorrelation Ruleset on page 196
Netcool/Precision IP 3.6 Monitoring and RCA Guide 155

Chapter 7: Root Cause Analysis
7.1 Introduction to Root Cause Analysis

Root cause analysis is the process of determining the root cause of one or more alerts. A failure situation on
the network usually generates multiple alerts. This is because a failure condition on one device may render
other devices inaccessible. Polling agents are unable to access the device which has the failure condition. In
addition, polling agents are also unable to access other devices rendered inaccessible by the error on the
original device. Events are generated indicating that all of these devices are inaccessible. These events are sent
by the MONITOR probe to the Netcool/OMNIbus ObjectServer.

In addition to the events sent by the MONITOR probe to the Netcool/OMNIbus ObjectServer,
Netcool/Precision IP can perform root cause analysis on any event received from the ObjectServer. This
includes events which arrive at the ObjectServer from Netcool/OMNIbus probes.

Netcool/Precision IP performs root cause analysis by correlating event information with topology
information. This enables Netcool/Precision IP to determine which devices are temporarily inaccessible due
to other network failures. Alerts on devices which are temporarily inaccessible are suppressed, that is, shown
as symptoms of the original, root cause alert. When the root cause alert is resolved, these events remain in
the ObjectServer and depending on whether they are real problems they may be cleared at a later stage, or
they may, in turn, become root causes of other events.

The Netcool/Precision IP component which performs root cause analysis is called AMOS.
Netcool/Precision IP 3.6 Monitoring and RCA Guide156

Introduction to Root Cause Analysis
Architecture of Root Cause Analysis

Figure 16 shows how the AMOS component applies topology-based RCA to events held in the
ObjectServer.

On startup, AMOS downloads event correlation rules from CLASS, the AOC management system. This is
shown as item A in Figure 16. AMOS performs root cause analysis by correlating event information with
topology information, using event correlation rules specified in the Active Object Classes (AOCs).

The other steps enumerated in Figure 16 are described below:

1. MODEL sends topology information to AMOS. This occurs on startup of AMOS but also occurs if
the topology in MODEL is updated due to a new discovery on the network. AMOS stores this data
in its topoCache.entityByName database table. This database table is described in
topoCache.entityByName Entity Database Table on page 170.

MODEL also sends topology information to the Event Gateway so that the Event Gateway can
enrich events from the Object Server with topology information.

Figure 16: Root Cause Analysis Architecture

ObjectServer
Event
Gateway

AMOS

MODEL

events

topology

1

CLASS

A event
correlation
rules

MONITOROMNIbus

2

ProbeProbe

3

events

4 events
Netcool/Precision IP 3.6 Monitoring and RCA Guide 157

Chapter 7: Root Cause Analysis
2. The ObjectServer receives events from Netcool/OMNIbus probes and from the MONITOR probe.

3. The ObjectServer performs event correlation and deduplication on all the events it stores. The
ObjectServer sends a subset of its events to the Event Gateway. These events can be enriched with
topology information and sent back to the ObjectServer.

4. The Event Gateway sends events to AMOS. AMOS performs RCA on these events and sends them
back to the Event Gateway, which in turn sends them back to the ObjectServer. The ObjectServer is
the master event repository.

Prior to performing RCA on these events, AMOS stores the events in its mojo.events database
table. This database table is described in mojo.events Events Database Table on page 168.

Mechanism of Root Cause Analysis

AMOS performs root cause analysis by correlating event information with topology information.

• The event information is held in the AMOS mojo.events database table.

• The topology information is held in the AMOS topoCache.entityByName database table.

AMOS uses event correlation rules to perform root cause analysis. Using these rules, AMOS is able to
analyze an event on one device and calculate the impact on each connected device in the network topology.

AMOS performs root cause analysis based on a number of considerations. These include the following:

• Containment associated with the network devices in the topology.

• Connectivity between network devices in the topology.

• Network infrastructure faults, such as cable breaks.

The section which follows provides practical examples of how AMOS performs root cause analysis. Detailed
information on the structure of the event correlation rules can be found in The Event Correlation Rules on
page 173.

Examples of Root Cause Analysis

The examples in this section show how AMOS performs RCA based on these considerations for different
types of network device and interface.
Netcool/Precision IP 3.6 Monitoring and RCA Guide158

Introduction to Root Cause Analysis
The terms downstream and upstream are used in many of the examples in this section. These terms consider
the perspective of the polling station.

• The term downstream refers to a location on the network topologically more distant from the polling
station but on the same physical path as a second location. For example, in Figure 17, device B is
downstream of device A.

• The term upstream refers to a location on the network topologically closer to the polling station but
on the same physical path as a second location. For example, in Figure 17, device A is upstream of
device B.

In complex networks the distance of devices from the polling station changes as devices are deactivated. This
in turn has an impact on which devices are upstream or downstream.

Note: The examples of RCA shown in this chapter are for illustrative purposes only. RCA in large networks
is extremely complex and the examples shown here are only meant to show the principles which RCA uses.

Chassis Devices and Loopback Interfaces

Failures on chassis devices (main node devices) are given priority. AMOS assumes that if a chassis has failed,
then, in many cases, the root cause for other failures originates in the chassis. Chassis failures suppress failures
on contained interfaces, connected interfaces and on downstream chassis devices.

The loopback interface has a special function within a chassis device, whether router or switch. A loopback
interface always has an IP address, which corresponds to the IP address of the device. This means that the
loopback interface represents the whole chassis and can be polled individually. It also means that failures on
the loopback interface suppress failures on connected and contained entities in exactly the same way as
failures on chassis devices.

Figure 17: Downstream and Upstream Devices

A

Polling Station

B

Netcool/Precision IP 3.6 Monitoring and RCA Guide 159

Chapter 7: Root Cause Analysis
The examples below provide examples of each of these connections and show which failures are flagged as
root cause and which are suppressed:

• A failure on a chassis device suppresses failures on interfaces contained within that chassis, as shown
in Example Contained Interfaces on page 160.

• A failure on a chassis device suppresses failures on directly connected interfaces, whether upstream or
downstream of the chassis device, as shown in Example Connected Interfaces on page 161.

• A chassis device contains one or more entities. A failure on the chassis device suppresses failures on
entities directly connected to any of the entities contained within that chassis device, as shown in
Example Entities Connected To A Contained Entity on page 161.

• A failure on a chassis device suppresses failures on all downstream chassis devices, as shown in
Example Downstream Chassis Devices on page 163.

Example Contained Interfaces

A chassis failure suppresses all failures on interfaces contained within that chassis. In Figure 18, failure on
chassis device A suppresses failures on interfaces b, c and d which are all contained within chassis device A.

Figure 18: Chassis Failure Suppresses Failures On Contained Interfaces

b

c

A

d

Failure

Suppressed Failure
Netcool/Precision IP 3.6 Monitoring and RCA Guide160

Introduction to Root Cause Analysis

Example Connected Interfaces

A chassis failure suppresses all failures on interfaces connected to that chassis device. Failures are suppressed
on both upstream and downstream interfaces. In Figure 19, device A suppresses failures on upstream
interface b and on downstream interfaces c and d.

Example Entities Connected To A Contained Entity

A chassis device may contain one or more entities. Examples of entities which can be contained within a
chassis device are VLANs, cards and virtual routers. A contained entity may have one or more interfaces. For
more information on containment within the Netcool/Precision IP network model, see the Netcool/Precision
IP Discovery Configuration Guide.

Figure 19: Chassis Failure Suppresses Failures On Connected Interfaces

A

b

c d

Failure

Suppressed Failure
Netcool/Precision IP 3.6 Monitoring and RCA Guide 161

Chapter 7: Root Cause Analysis
A failure on the chassis device suppresses failures on entities directly connected to any of the entities
contained within that chassis device. In Figure 20, entity B is contained within chassis device A. A failure
on chassis device A suppresses a failure on interface d on device D and interface e on device E. Both interfaces
d and e are directly connected to entity B.

Figure 20: Chassis Failure Suppresses Failures Devices Connected to Contained Entities

AB

E

C

d D

e

Failure

Suppressed Failure
Netcool/Precision IP 3.6 Monitoring and RCA Guide162

Introduction to Root Cause Analysis

Example Downstream Chassis Devices

A failure on a chassis device suppresses failures on all chassis devices downstream of the chassis where the
failure occurred. In Figure 21, failure on chassis device A suppresses failures on chassis devices B, C and D
which are all downstream of chassis device A.

Interfaces

Standard physical interface failures are not capable of suppressing interface failures on downstream entities.

A standard interface failure can only suppress a second physical interface failure if the two interfaces are
directly connected. The interface whose suppression rule fires first, suppresses the other interface.
Suppression of one interface failure by a second interface failure can only occur if these interface failures are
not already being suppressed by a chassis failure or a loopback interface failure.

Figure 21: Chassis Failure Suppresses Failures On Downstream Entities

A

D

B C

Failure

Suppressed Failure
Netcool/Precision IP 3.6 Monitoring and RCA Guide 163

Chapter 7: Root Cause Analysis
A physical interface can contain multiple logical interfaces. A failure on a physical interface can suppress
failures on its related logical interfaces. The physical interface can suppress its related logical interface even
if there is connectivity between that logical interface and an external neighbor. A suppressed physical
interface can pass on the details of its suppressor entity to the events on its associated logical interfaces.

• Example Directly Connected Interface on page 164 illustrates how an interface failure can suppress a
more recent failure on a directly connected interface.

• Example Related Logical Interface on page 164 illustrates how a physical interface failure can suppress a
failure on related logical interfaces.

Example Directly Connected Interface

A standard physical interface failure suppresses a second physical interface failure if the two interfaces are
directly connected. The suppressing interface failure must be older than the failure to be suppressed.
Suppression of one interface failure by a second interface failure can only occur if these interface failures are
not already being suppressed by a chassis failure or a loopback interface failure. In Figure 22, failure on
interface a suppresses the more recent failure on directly connected interface b.

Example Related Logical Interface

A failure on a physical interface suppresses failures on its related logical interfaces. In Figure 23, failure on
physical interface a suppresses failures on contained logical interfaces b and c.

Figure 22: Interface Failure Suppresses More Recent Failure On Directly Connected Neighbor Interface

a b

Failure

Suppressed Failure

Figure 23: Physical Interface Failure Suppresses Failures on Contained Logical Interfaces

a

b c

Failure

Suppressed Failure
Netcool/Precision IP 3.6 Monitoring and RCA Guide164

Introduction to Root Cause Analysis

Example Downstream Suppression For Interfaces at The Edge of a Network

A failure on a logical or physical interface that is the sole connection between other entities and the network
will suppress failures in the downstream entities. In Figure 24, failure on interface d in device A suppresses
failures on devices B, C and D and their interfaces.

Figure 24: Interface Failure Suppresses More Recent Failure On Directly Connected Neighbor Interface

a b

c d

A

a

b c

a

b c

a

b c

B

C D

Failure

Suppressed Failure
Netcool/Precision IP 3.6 Monitoring and RCA Guide 165

Chapter 7: Root Cause Analysis
7.2 Starting AMOS

Micromuse recommends that AMOS is started using the domain process controller CTRL. The use of
CTRL to automatically manage processes is described in the Netcool/Precision IP Discovery Configuration
Guide.

On Microsoft Windows, Netcool/Precision IP components can be run as processes or as Windows services.
Components run as processes are started from a command prompt in the same way as on UNIX platforms.
For more information on running components as Windows services, see the Netcool/Precision IP Discovery
Configuration Guide.

!!
Warning: If you are using Netcool/Precision IP with failover, you must start AMOS using CTRL. The
CTRL process checks the status of the AMOS component and uses this information to generate the Health
Check events used by the failover process. For more information on failover, see the Netcool/Precision IP
Installation and Deployment Guide.

Prerequisites for Starting AMOS

The following Precision Server processes need to be running before starting AMOS:

• CTRL, the domain process controller. CTRL may be configured to start other Precision Server
processes. CTRL must be running in order to start the subprocesses of DISCO and MONITOR.

• DISCO, the discovery process controller. DISCO must have successfully completed a network
discovery, and the network topology and containment model must have been passed to MODEL.

• MODEL, the network topology distributor. AMOS loads topology information from MODEL into
the AMOS entity database.

• CLASS, the AOC management system. AMOS downloads the fault rules from CLASS.

• MONITOR, the polling process controller. MONITOR launches and manages the polling agents.

Note: You can also use Netcool/OMNIbus probes. Netcool/OMNIbus probes work seamlessly with
Netcool/Precision IP without any need for configuration if you have the Netcool/Knowledge Library
installed. The Netcool/Knowledge Library is available with your Netcool/OMNIbus installation. It is
also available as a download on the Micromuse Support Site.

• STORE, the persistent storage engine. When AMOS starts, it loads information from STORE into
the AMOS events database.
Netcool/Precision IP 3.6 Monitoring and RCA Guide166

Starting AMOS
Manually Starting AMOS

To manually start AMOS, run the ncp_f_amos command.

The command line options for ncp_f_amos are:

ncp_f_amos -domain DOMAIN_NAME [-latency LATENCY] [-debug DEBUG] [-help] [-version]

Table 76 describes the command line options for ncp_f_amos.

Process Flow in AMOS

The following steps describe the processes that occur when AMOS is launched:

1. The following information is transferred:

– Event information is loaded from STORE into the AMOS events database.

– The network topology is downloaded from MODEL into the AMOS entity database.

– The fault rules, used for event correlation, are downloaded from CLASS.

2. The Netcool/Precision IP gateway process synchronizes the events in the AMOS database with those
in the ObjectServer. AMOS continues to monitor the events passing through the Event Gateway.

3. AMOS listens for updates from MODEL and CLASS allowing it to maintain an up to date topology
model and set of fault rules.

Table 76: ncp_f_amos Command Line Options

Option Explanation

-domain DOMAIN_NAME The name of the domain under which to run AMOS.

-latency LATENCY The maximum time in milliseconds that AMOS waits for the to connect to
another process using the messaging bus. This option is useful for large and
busy networks where the default settings can cause the process to assume that
there is a problem when in fact the communication delay is a result of network
traffic.

-debug DEBUG The level of debugging output (1-4, where 4 represents the most detailed
output).

-help Prints out a synopsis of all command line options for ncp_f_amos then exits.

-version Prints the version number of ncp_f_amos then exits.
Netcool/Precision IP 3.6 Monitoring and RCA Guide 167

Chapter 7: Root Cause Analysis
7.3 AMOS Databases

AMOS uses two main database tables to store information:

• mojo.events - stores event information.

• topoCache.entityByName - stores entity information.

In addition to these database tables, the translations databases are defined in AmosSchema.cfg.
These are used internally and should not be modified by the user. AMOS also stores class-based information
in an internal database.

mojo.events Events Database Table

The mojo database is defined in NCHOME/etc/precision/AmosSchema.cfg. It contains the
table mojo.events.

Note: NCHOME is the environment variable that contains the path to the Netcool Suite home directory. For
information on how this environment variable varies with platform, see Operating System Considerations on
page 9.

The mojo.events table, described in Table 77, stores all of the event records sent for root cause analysis
by the Event Gateway. When AMOS is launched, event information is also read from STORE into this
database. The column names of the records are used in many of the conditional filters when constructing
event correlation methods.

Table 77: mojo.events Table Description (1 of 3)

Column Name Constraints Data Type Description

EventId PRIMARY KEY

NOT NULL

UNIQUE

Long Integer The event ID.

EntityName PRIMARY KEY

NOT NULL

Text The name of the associated entity.

ClassName NOT NULL Text The name of the associated Active Object Class.

NcoSerial Int The serial number of the event as assigned by the
ObjectServer.

Description Text A textual description of the event.

EventName Varchar (256) The name of the event which should be made the
EventID field in the ObjectServer.
Netcool/Precision IP 3.6 Monitoring and RCA Guide168

AMOS Databases
RuleSet Text Set of rules that are used together to handle a
particular occurrence of an event.

RuleName Text The name of the head rule for this event.

EventType Externally defined
eventType data
type

Integer Type of event. Possible value are:

• 0 - Event

• 1 - Data

• 2 - Alert

Severity PRIMARY KEY

NOT NULL
Externally defined
severity data type

Integer The OSI severity code. Possible values are:

• 0 - Clear

• 1 - Unknown

• 2 - Warning

• 3 - Minor

• 4 - Major

• 5 - Critical

• 6 - No severity

Contact Text The contact group responsible for the device that
generated the event.

AssignedTo Text The person the event has been assigned to.

Acknowledged Integer of
boolean type

Denotes whether the event has been
unacknowledged or acknowledged. Possible values
are:

• 0 - Unacknowledged

• 1 - Acknowledged

Location Text Location of the device that generated the event.

CorrelatedId List of Long
Integers

List of associated event IDs.

EventGroupId Long Integer List of associated events.

ActionGlyph Text An alert display glyph (icon).

CreateTime TIMESTAMP Long Integer Time of the first occurrence of the event.

ChangeTime TIMESTAMP Long Integer Time of the last occurrence of the event.

Occurred COUNTER Integer Number of identical events that have occurred.

Table 77: mojo.events Table Description (2 of 3)

Column Name Constraints Data Type Description
Netcool/Precision IP 3.6 Monitoring and RCA Guide 169

Chapter 7: Root Cause Analysis
topoCache.entityByName Entity Database Table

The topoCache database is defined in NCHOME/etc/precision/AmosSchema.cfg. It contains
the table topoCache.entityByName.

CauseType Externally defined
causeType data
type

Integer The type of alert. Possible values are:

• 0 - Unknown

• 1 - Root

• 2 - Symptom

ActionType Externally defined
actionType data
type

Integer The type of action the event represents—a new event,
updated event or deleted event. Possible values are:

• 0 - New

• 1 - Update

• 2 - Delete

InternalAction Externally defined
internalAction data
type

Integer The internal action associated with the event. Possible
values are:

• 0 - None

• 1 - Acknowledged

• 2 - Unacknowledged

• 3 - Assign

• 4 - Deassign

• 5 - Tool

• 6 - Clear

• 7 - Clear chain

• 8 - Clear with

AgentAddress Text polling agent location (IP address).

Dist Int Indicates whether the event should be broadcast
using ncp_dist.

AlertType Text Description of the type of alert or event, for example,
topology alert or temperature alert.

ExtraInfo Externally defined
varbind list

Object List of additional information.

Table 77: mojo.events Table Description (3 of 3)

Column Name Constraints Data Type Description
Netcool/Precision IP 3.6 Monitoring and RCA Guide170

AMOS Databases
The topoCache.entityByName table, described in Table 78, contains all information relating to
network entities, their containment and connections. When AMOS is launched, it reads entity information
from MODEL into this database table. This information allows AMOS to differentiate objects of the same
class using conditional tests and filters in the poll definitions or event correlation methods.

Table 78: topoCache.entityByName Table Description (1 of 2)

Column Name Constraints Data Type Description

ObjectId PRIMARY KEY

NOT NULL

UNIQUE

Long Integer Unique Object ID of the network entity.

EntityName PRIMARY KEY

NOT NULL

UNIQUE

Text Unique descriptive name of a network entity.

Address List of Text
data type

List of OSI model Layer 1-7 addresses for the
entity.

Description Text Value of sysDescr MIB variable or other
suitable description of the entity.

EntityType Externally defined
entityType data type

Integer Element type of the object. Possible values are:

• 0 - Unknown

• 1 - Chassis

• 2 - Interface

• 3 - Logical interface

• 4 - VLAN object

• 5 - Card

• 6 - PSU

• 7 - Subnet

• 8 - Module

ClassName Text The associated Active Object Class (if
applicable).

EntityOID Text Value of sysOID MIB variable of the object.

ExtraInfo Externally defined
varbind list

Object List of additional information.

Status Externally defined
status data type

Integer Flag showing status of the network object.

Security Text Password to access network entity (if
applicable).
Netcool/Precision IP 3.6 Monitoring and RCA Guide 171

Chapter 7: Root Cause Analysis
RelatedTo List of Text
data type

List of connections to the network object.

Contains List of Text
data type

List of elements or other containers contained
by this object.

UpwardConnections List of Text
data type

The name of the physical container to which
the network object belongs.

IsActive Integer of
boolean type

Flag indicating whether an Active Object Class
is needed.

CreateTime Time Creation time of network entity record in table.

ChangeTime Time Time of last modification to the network entity
record.

ActionType Externally defined
actionType data type

Integer The type of action the event represents—a new
event, updated event or deleted event. Possible
values are:

• 0 - New

• 1 - Update

• 2 - Delete

LingerTime NOT NULL Integer The number of discoveries which have to be
run before an entity which has an entry in this
table but which has not since been discovered
is removed from the table. An entity that can
not longer be discovered indicates the device
may have been removed from the network.

Table 78: topoCache.entityByName Table Description (2 of 2)

Column Name Constraints Data Type Description
Netcool/Precision IP 3.6 Monitoring and RCA Guide172

The Event Correlation Rules
7.4 The Event Correlation Rules

When AMOS is launched, it downloads the event rules for each AOC stored in CLASS. The event rules are
on standby until triggered. An event rule can be triggered by a timer in the rule itself, by an incoming event,
or by another event rule. If an event rule is triggered by another event rule, this is called rule chaining.

The AOC files are stored in the directory NCHOME/precision/aoc and the event rules file are stored
below the directory NCHOME/precision/aoc/rca_rules. The rules are listed in the AOC file and
can be located by searching for the section:

extension for Fault = {
 rules = [

The format of each rule entry is:

"directory_name/rule_name.rule",

Where directory_name is the directory containing the rule file and rule_name is the name of the
rule.

To edit an event correlation rule, open the rule file and make changes using a text editor.

Inherited Rules

When an AOC is downloaded it inherits event correlation rules from its parent class. You can create an event
correlation rule in a class that overrides the inherited rule. This does not change that rule in the parent class.

Rule Chaining

Rule chaining is a way of using event rules by joining them together in a chain. Rules are chained using one
of the following attributes:

evaluate_after = "rulename",
evaluate_after_fired = "rulename",
evaluate_after_not_fired = "rulename",
evaluate_when = "rulename"

These attributes are described in Event Rule Attributes on page 174. The example in Figure 25 shows the rule
chain when the attribute evaluate_when_fired="NonTimedAlertTransition" is added to
the rule EventEntityToAlert.

Figure 25: Example of Rule Chaining

EntityEventToAlert NonTimedAlertTransition
Netcool/Precision IP 3.6 Monitoring and RCA Guide 173

Chapter 7: Root Cause Analysis
Multiple Parenting

Multiple parenting refers to chaining two different event rules from the same parent in the same way. The
rules do this by creating one rule which triggers two other rules using the same evaluate_ attribute.

Event Rule Attributes

The event correlation rule is created using attributes. The top level attributes are:

• rulename

• ruleset

• firing_condition

• execute_location

• execute_rule
Netcool/Precision IP 3.6 Monitoring and RCA Guide174

The Event Correlation Rules
Many of these attributes have multiple levels of sub-attributes, as shown in Figure 26.

The event correlation rule attributes are described in the following sections.

Figure 26: Event Correlation Rule Structure

rulename

ruleset

firing_condition

execute_location

execute_rule

expires_seconds

expires_hours

expires_days

event_filter

entity_filter

evaluate_after

evaluate_after_fired

evaluate_after_not_fired

evaluate_when_fired

run_on_devices

run_in_container

entity_activity_state

run_on_entities

create_events

change_events

delete_events

run_directives

rule_control

control

isolated_from

include_trigger_entity

target

filter

use_location

action

actionfilter

use_location

action

actionfilter

use_location

action

actionfilter

subject

copy_values

send_string

daemon_running_order

set_daemon

clear_daemon

copy_record

actionvalues

no_run_when_exists

actionvalues

filter

no_run_when_exists

filter

no_run_when_exists

entity_filter
Netcool/Precision IP 3.6 Monitoring and RCA Guide 175

Chapter 7: Root Cause Analysis
rulename

The rulename attribute declares the name of the current event rule. Any string of text is accepted as a
valid entry and must be unique within the specified AOC. An example rulename is given below:

rulename = ‘pingFailEventToAlert’,

The rulename attribute has no sub-attributes and must be followed by the ruleset attribute.

ruleset

The ruleset attribute is a conditional test. The rule only fires if the ruleset of the incoming event matches
the named ruleset. In the following example, the rule only fires if the event has the ruleset
TopologicalAlertCorrelation.

ruleset = ‘TopologicalAlertCorrelation’,

The name of the ruleset is case-sensitive and must be enclosed in single quotes. The ruleset attribute has
no sub-attributes and must be followed by the firing_condition attribute.

firing_condition

The firing_condition attribute controls when the rule runs, and also controls rule chaining.

The sub-attributes are described in Table 79.

Table 79: firing_condition Sub-Attribute Descriptions (1 of 2)

Sub-Attribute Description

expires_seconds Defines the interval at which the rule runs, in seconds.

expires_hours Defines the interval at which the rule runs, in hours.

expires_days Defines the interval at which the rule runs, in days.

event_filter Applies a filter to the event which triggered the event rule. The filter can use fields
from the AMOS Events database, as well as logical operators and the eval
statement.

entity_filter Gathers information about the device which triggered the event rule from AMOS
entity database. Then applies a filter to this information.

evaluate_after Runs the current event rule (the one in which this attribute appears) on the AMOS
Events database when the specified event rule (the one named in this attribute) has
been evaluated, regardless of whether or not it has fired. The example below runs
the present event rule after the event rule PingFailToAlert:
Netcool/Precision IP 3.6 Monitoring and RCA Guide176

The Event Correlation Rules
The expires_ attributes define an event rule as timed. If they are all set to zero, the event rule is untimed
and the _filter attributes and the evaluate_ attributes define the trigger condition. If the rule is not
timed and there are no filters, the rule is applied to all incoming events.

Note: A rule is said to have fired if all the filters in the firing condition have been passed and processing has
moved on to the execute_rule section. The execute_rule section is the part of the rule which
takes action on the event. If one or more of the filters have failed, the rule is said to have been evaluated but
not fired.

The evaluate_ attributes provide the ability to chain rules together. Rule chaining allows a series of
simple event rules to be combined to form more complex event rules. For example, when one event rule
finishes its processing, its output can be processed by a second event rule. This improves efficiency in
determining root cause and reduces the number of event rules required in the AOCs.

firing_condition Examples

The following firing_condition attribute is taken from one of the default event rules files.

firing_condition = {
expires_seconds = 0,
expires_hours = 0,
expires_days = 0,
//---
event_filter= "

InternalAction=eval(int,'$NONE') AND
EventType=eval(int,'$EVENT') AND
ActionType=eval(int,'$NEW') AND
Severity>eval(int,'$CLEAR')
",

entity_filter= "",
evaluate_after = "",
evaluate_after_fired = "",
evaluate_after_not_fired = "",

evaluate_after_fired Runs the current rule on the AMOS Events database when the specified rule has
fired.

evaluate_after_not_fired Runs the current rule on the AMOS Events database when the specified rule has
been evaluated and not fired.

evaluate_when_fired Takes the output of the specified rule after it has fired, and uses it as the input of the
current rule.

firing_policy These sub-attributes are for internal use only.

Table 79: firing_condition Sub-Attribute Descriptions (2 of 2)

Sub-Attribute Description
Netcool/Precision IP 3.6 Monitoring and RCA Guide 177

Chapter 7: Root Cause Analysis
evaluate_when_fired = "",
},

You can make the following changes to your firing_condition attribute to fire the rule every 30
seconds.

firing_condition = {
expires_seconds = 30,
expires_hours = 0,
expires_days = 0,

You can make the following changes to your firing_condition attribute to create a filter that requires
the following to be true:

• The event is a new event from the polling process, (EventType = EVENT and ActionType =
NEW).

• The severity of the event is greater than UNKNOWN.

event_filter = "
EventType=eval(int,‘$EVENT’) AND
Actiontype=eval(int,‘$NEW’) AND
Severity>eval(int,‘$UNKNOWN’)
",

You can make the following change to your firing_condition attribute to filter the alert to ensure
that the rule is only run on instances of the class Cisco4000.

entity_filter = "ClassName=‘Cisco4000’",

You can make the following change to your firing_condition attribute to run your current event
rule after the event rule PingFailToAlert.

evaluate_after = "PingFailToAlert",

execute_location

The execute_location attribute contains a set of sub-attributes which defines which events the rule
takes action upon.

The sub-attributes are:

• run_on_devices

• run_on_entities

• run_in_container

• entity_activity_state
Netcool/Precision IP 3.6 Monitoring and RCA Guide178

The Event Correlation Rules
These sub-attributes are described in the following sections.

run_on_devices

The run_on_devices attribute is a sub-attribute of execute_location and contains its own
sub-attributes, as described in Table 80.

Table 80: run_on_devices Sub-Attribute Descriptions (1 of 2)

Sub-Attribute Description

control Possible topologically-related values are:

• 0 - Instance - Selects only the object which generated the event that triggered the
event rule.

• 1 - Isolated - Selects all objects which can only be reached by going though the
instance.

• 2 - Connected - Selects all objects that are directly connected to the instance.

The scope specified by each of the above options is shown in Figure 27 on page 180.
The event correlation rule is applied to all alerts from devices in scope, plus the
original poll fail alert. In this example network, the device selection is also subject to
the application of the containment model.

If 2 is selected then the following entities are used to run the rule:

• Any entity contained by the trigger entity

• Any entity directly connected to the trigger entity

• Any entity directly connected to an entity contained by the trigger entity

A further possible value for this attribute is 3 - Arbitrary Query. This value applies an
OQL query to the topoCache.entityByName table. The query can make use of
field values from the trigger event, if required. The topoCache.entityByName
table, described in topoCache.entityByName Entity Database Table on page 170,
contains all information relating to network entities, their containment and
connections:

isolated_from Defines the location of the polling agent. Used by AMOS to identify the devices that
are isolated by the failure of the original device.

You can specify the location of the polling Agent using its entity name. This can be
extracted from the rule triggering event using an eval statement similar to:

isolated_from = "EntityName=eval(text,‘&AgentAddress’)",

Note: This attribute is only required if control is set to 1.
Netcool/Precision IP 3.6 Monitoring and RCA Guide 179

Chapter 7: Root Cause Analysis
Figure 27 shows how the control attribute selects network devices.

entity_filter Gathers information about the device which triggered the event rule from AMOS
entity database. Then applies an OQL statement in order to identify a related IP
address. This filter is equivalent to the where clause of an OQL query that AMOS uses
to select the required entities from the topoCache.entityByName table.

Note: This attribute is only required if control is set to 3.

Here is an example:

entity_filter = "Address(2) =
eval(text,'&ExtraInfo->m_NbrIpAddress') OR
eval(text,'&ExtraInfo->m_NbrIpAddress') IN
(ExtraInfo->m_BgpPeers)"

include_trigger_entity Defines whether the trigger entity is included in the list of entities selected by the
execute_location attribute. Possible values are:

• true - trigger entity is included

• false - trigger entity is not included

Note: This attribute is only required if control is set to 1, 2, or 3.

Table 80: run_on_devices Sub-Attribute Descriptions (2 of 2)

Sub-Attribute Description

Figure 27: Application of the control Attribute
Netcool/Precision IP 3.6 Monitoring and RCA Guide180

The Event Correlation Rules
run_on_entities

The run_on_devices attribute, described on page 179, returns all events on connected devices, using
the object that generated the event as the reference. The run_in_container attribute, described on
page 181, returns all events contained within the object that generated the event.

In contrast, the run_on_entities attribute provides a more generic way for you to search within the
mojo.events database table for events that you are interested in. Formulate this search by defining a
filter within the run_on_entities attribute. This filter is equivalent to a where statement within a
select clause.

Formulate your event filter in event-filter. Use the IP address on which the event occurred or some
other appropriate attribute of the event in order to formulate your event filter.

run_in_container

The run_in_container attribute is a sub-attribute of execute_location. It defines the
containment model the event correlation rule uses. For a full description of containment, see the
Netcool/Precision IP Discovery Configuration Guide.

For example, a switch consists of a chassis that contains a series of cards, which may in turn contain a series
of ports. Additionally, these ports may be associated with a series of VLANs. Using the
run_in_container attribute, you could consider only those events coming from the switch, or only
the cards or ports, or some combination of these.
Netcool/Precision IP 3.6 Monitoring and RCA Guide 181

Chapter 7: Root Cause Analysis
The run_in_container attribute contains the sub-attributes target and filter. These are
described in Table 81.

Note: To disable recursing through the containment model the run_in_container attribute is left
empty, that is, run_in_container = {}

Table 81: run_in_container Sub-Attribute Descriptions

Sub-Attribute Description

target Defines the target for the event correlation rule using an eval statement. It must be entered in the
format:

run_in_container = {
target = "eval(list type text,‘this(traverse_up,

traverse_dwn,controlFlag)->EntityName’)",

The value of traverseUp is an integer which specifies the number of levels to traverse up through
the containment model. For example, if the event which triggered the event rule came from a card on
a switch, a value of 1 for traverseUp would bring events on the switch into scope. It can also take
the predefined value $physical, which recurses up to the top level of containment.

The value of traverse_dwn is an integer which specifies the number of levels to recurse down
through the containment model. For example, if the event which triggered the event rule came from
a card on a switch, a value of 1 for traverse_dwn would bring the ports in the card into scope. It
can also take the predefined value $physical, which recurses down to the bottom level of
containment.

The possible values of controlFlag are:

• $includerecursed - includes events on all devices along the path followed by traversing up
or down the containment model.

• $excluderecursed - includes only events on the end device.

filter Used to exclude some of the events you have just included by using the target attribute. An event
record is only classed as in scope, if this filter evaluates to true.
Netcool/Precision IP 3.6 Monitoring and RCA Guide182

The Event Correlation Rules

run_in_container Examples

Figure 28 shows an example container structure.

Using the following run_in_container syntax, when an alert is received from a device in container
4a, the scope transverses up by 2 levels and includes the events from the devices in the containers at each
level. The included devices are in containers 2a, 3a and 4a.

run_in_container = {
target = "eval(list type

text,‘this(2,0,$includerecursed)->EntityName’)",

Using the following run_in_container syntax, when an alert is received from a device in container
2a, the scope transverses down by 2 levels and includes the events from the devices in the containers at each
level. The included devices are in containers 2a, 3a, 3b, 4a, 4b, 4c and 4d.

run_in_container = {
target = "eval(list type

text,‘this(0,2,$includerecursed)->EntityName’)",

Using the following run_in_container syntax, when an alert is received from a device in container
4a, the scope transverses up by 2 levels and includes only the events from the devices in the end container.
The included devices are in container 2a.

run_in_container = {
target = "eval(list type

text,‘this(2,0,$excluderecursed)->EntityName’)",

Using the following run_in_container syntax, when an alert is received from a device in container
2a, the scope transverses down by 2 levels and includes only the events from the devices in the end container.
The included devices are in containers 4a, 4b, 4c and 4d.

run_in_container = {
target = "eval(list type

text,‘this(0,2,$excluderecursed)->EntityName’)",

Figure 28: Example Device Showing Container Structure
Netcool/Precision IP 3.6 Monitoring and RCA Guide 183

Chapter 7: Root Cause Analysis
In the following example, the run_in_container section uses the filter attribute to exclude all
event records not from interfaces.

run_in_container = {
target = "eval(list type text,‘this(0,2,$excluderecursed)

 ->EntityName’)",
filter = "EntityType = 2 AND

 ExtraInfo->m_ifIndex=eval(int,‘&ExtraInfo->ifIndex’)"
}

entity_activity_state

The entity_activity_state attribute is a sub-attribute of execute_location. The attribute
has three possible values, as described in Table 82.

execute_rule

The execute_rule attribute contains a set of sub-attributes which manipulates the records in the
AMOS Events database.

The sub-attributes are:

• create_events

• change_events

• delete_events

• run_directives

• rule_control

AMOS always runs the components of the event rule in this order. If you want to run the components in a
different order, you must define two separate event correlation rules and use rule chaining.

Table 82: entity_activity_state Attribute Description

Value Description

0 DEACTIVATE – Select this value when the event that triggered this rule indicates that connectivity has been
lost to the device. For example, a LinkDown trap or a PingFail event.

1 ACTIVATE – Select this value when the event that triggered this rule indicates that connectivity has been
restored to the device. For example, a LinkUp trap or a PingRestore event.

2 HOLDSTATE – Select this value when the event that triggered this rule does not necessarily indicate a
restoration or a loss of connectivity to the device. For example, a vendor-specific trap indicating that the
temperature of a router had exceeded a certain limit.
Netcool/Precision IP 3.6 Monitoring and RCA Guide184

The Event Correlation Rules
Note: In the execute_rule section a double ampersand (&&) references the trigger record (the record
that originally triggered this event rule). A single ampersand (&) references the current record (the record
that the rule is presently considering).

create_events

The create_events attribute is a sub-attribute of execute_rule. It allows you to create new events
and send them to the AMOS events database.

The create_events attributes contains sub-attributes use_location, action and
actionfilter. An instance of these sub-attributes in combination is referred to as an action. There can
be more than one action in the create_events section. The following text shows a simplified example
of the syntax used for multiple actions.

create_events = [

{ // first action is everything within these curly braces

use_location = 1,
action = {

copy_record = 0,
actionvalues = [],
no_run_when_exists= ""
},

actionfilter = ""

}, // end of first action

{ // second action is everything within these curly braces

use_location = 1,
action = {

copy_record = 0,
actionvalues = [],
no_run_when_exists=""
},

actionfilter = ""

} // end of second action

],
Netcool/Precision IP 3.6 Monitoring and RCA Guide 185

Chapter 7: Root Cause Analysis
The sub-attributes of create_events are described in Table 83.

Table 83: create_events Sub-Attribute Descriptions

Sub-Attribute Description

use_location A boolean integer which defines whether the scope specified in actionfilter is used or not.
Possible values are:

• 0 - false - the actionfilter is bypassed and any record specified by the
execute_location section runs the action, subject to the no_run_when_exists
attribute.

• 1 - true - the actionfilter functions as normal.

action This attribute has three further sub-attributes:

• copy_record

• actionvalues

• no_run_when_exists

These are described in Table 84 on page 187.

actionfilter Determines whether the action goes ahead. The filter must evaluate true for the action to be
carried out.

The following example allows the action to be carried out only on the trigger event.

actionfilter = "EventId=eval(long,‘&&EventId’)" //&& is the
trigger event

}
]

Netcool/Precision IP 3.6 Monitoring and RCA Guide186

The Event Correlation Rules
Table 84 describes the sub-attributes of the action attribute. The action attribute is itself a
sub-attribute of create_events.

Table 84: action Sub-Attribute Descriptions

Sub-Attribute Description

copy_record An integer value that specifies which record is to be used as the template for the record
that is being created. The record being created uses the column names of the specified
record, and keeps the values of that record unless they are overridden by the
actionvalues attribute. Possible values are:

• 0 - Copies the trigger record.

• 1 - Copies the record currently being considered.

• 2 - Specifies that no record is to be copied. If this option is used, you must ensure that
the actionvalues creates an entire, valid record. Specifically, all columns which are
specified in the schema as being KEY or NOT NULL must be populated.

The following example copies the trigger record:

create_events = [
{

action = {
copy_record = 0,

actionvalues Specifies column names of the record (defined in copy_record) to be overwritten, and
the values to be entered into them. The following example shows the escalation of an
event to an alert.

actionvalues = [
"EventType = eval(int,‘$ALERT’)",
"CauseType = eval(int,‘$CAUSEUNKNOWN’)",
"Occurred = 1",
"Severity = eval(int,‘$MINOR’)"

],

no_run_when_exists Used to check whether the event or alert which has just been defined by the
copy_record and values attributes already exists. It consists of a logical test on the
column values of the event which has just been created. If the test evaluates true, this
particular action (remember there can be more than one action in any one particular
create_events section) is not run. An example of this filter is given below.

no_run_when_exists = "
EntityName = eval(text,‘&&EntityName’) AND // && is the

trigger record
EventName = eval(text,‘&&EventName’) AND
RuleSet = eval(text,‘&&RuleSet’) AND
EventType = eval(int,‘$ALERT’)"

},
Netcool/Precision IP 3.6 Monitoring and RCA Guide 187

Chapter 7: Root Cause Analysis
change_events

The change_events attribute is a sub-attribute of execute_rule. It allows you to change AMOS
events that match the filter attribute, when events in scope match the actionfilter attribute.

The change_events attributes contains sub-attributes use_location, action and
actionfilter. An instance of these sub-attributes in combination is referred to as an action. There can
be more than one action in the change_events section. The following text shows a simplified example
of the syntax used for multiple actions.

change_events = [

{ // first action is everything within these curly braces

use_location = 1,
action = {

 no_run_when_exists= ""
 },

actionfilter=""

}, // end of first action

{ // second action is everything within these curly braces

use_location = 1,
action = {},
actionfilter=""

} // end of second action

],
Netcool/Precision IP 3.6 Monitoring and RCA Guide188

The Event Correlation Rules
The sub-attributes of change_events are described in Table 85.

Table 85: change_events Sub-Attribute Descriptions

Sub-Attribute Description

use_location A boolean integer which defines whether the scope specified in actionfilter is used or not.
Possible values are:

• 0 - false - the actionfilter is bypassed and any record specified by the
execute_location section runs the action, subject to the no_run_when_exists
attribute.

• 1 - true - the actionfilter functions as normal.

action This attribute has two further sub-attributes:

• actionvalues

• filter

• no_run_when_exists

These are described in Table 86.

actionfilter This attribute ensures the following is true in order for the action to proceed:

• At least one record has been selected to be in scope by execute_location.

• At least one of the records in scope has been passed by actionfilter, unless
actionfilter has been disabled by use_location.

• The record to be changed (not necessarily one of the records in scope) has been passed by
filter.

There may be several actions in any one create_events section. The actionfilter of
the last action marks the end of the create_events section. The next section,
delete_events, is the simplest of the sections which modify the AMOS Events database.

The behavior of the filter and actionfilter is shown in Figure 29 on page 191
Netcool/Precision IP 3.6 Monitoring and RCA Guide 189

Chapter 7: Root Cause Analysis
Table 86 describes the sub-attributes of the action attribute. The action attribute is itself a
sub-attribute of change_events.

Table 86: action Sub-Attribute Descriptions

Sub-Attribute Description

actionvalues Allows you to change values of the records in scope. The following example increments
the Occurred field of the records.

change_events = [
{

action = {
values = [

"Occurred = eval(int,‘(&Occurred) + 1’)"
],

The Occurred field is displayed in the List Views of the Precision Desktop. It shows how
many times the same event on the same device has occurred.

filter The following must evaluate as true, for the action to proceed on the record specified in
the filter (subject to its passing the actionfilter):

• The records in scope have been chosen by previous sections and passed onto this
section.

• The records in scope must pass the actionfilter for this action. However, the
filter is not limited to the event records in scope.

The relationship between the filter and actionfilter attributes is discussed in filter
and actionfilter Attribute Behavior on page 191.

Note: Each filter attribute only applies to the current action in a multiple action section.
The filter also usually refers to the record currently in scope. This uses a single
ampersand.

The following example specifies that the action runs on the record currently in scope.

filter = "EventId = eval(long,‘&EventId’)"
},

no_run_when_exists Used to check whether the event or alert which has just been defined by the values and
filter attributes already exists. It consists of a logical test on the column values of the
event which has just been changed. If the test evaluates true, this particular action
(remember there can be more than one action in any one particular change_events
section) is not run. An example of this filter is given below.

no_run_when_exists = "
EntityName = eval(text,‘&&EntityName’) AND // && is the

trigger record
EventName = eval(text,‘&&EventName’) AND
RuleSet = eval(text,‘&&RuleSet’) AND
EventType = eval(int,‘$ALERT’)"

},
Netcool/Precision IP 3.6 Monitoring and RCA Guide190

The Event Correlation Rules

filter and actionfilter Attribute Behavior

Figure 29 shows the filter and actionfilter in use.

Only an event which has passed all the tests and filters up to this point can trigger the action, but the
action can be run on any event. The actionfilter attribute specifies which events run the action,
and the filter attribute specifies which events the action is run on.

delete_events

The delete_events attribute is a sub-attribute of execute_rule. It allows you to delete AMOS
events that match the filter attribute, when events in scope match the actionfilter attribute.

This delete_events attribute has a similar structure to the change_events attribute. As there is
only one possible action, to delete the event, the sub-attribute actionvalues is not required. For
descriptions of all other sub-attributes, see change_events on page 188.

Like the sections for create_events and change_events, the delete_events section can
contain more than one action. The table below gives a simplified example of the syntax of multiple actions.
The following text shows a simplified example of the syntax used for multiple actions.

delete_events = [

{ // first action is everything within these curly braces

use_location=1
action={

filter=""
no_run_when_exists=""

},
actionfilter=""

Figure 29: filter and actionfilter Attribute Operation
Netcool/Precision IP 3.6 Monitoring and RCA Guide 191

Chapter 7: Root Cause Analysis
}, // end of first action

{ // second action is everything within these curly braces

use_location=1
action={

filter=""
no_run_when_exists=""

},
actionfilter=""

} // end of second action

],

Note: Micromuse recommends that you delete events from the Netcool/OMNIbus ObjectServer.

run_directives

The run_directives attribute is a sub-attribute of execute_rule. It allows you to run external
actions by sending commands to Netcool/Precision IP Precision Server components.

Note: Micromuse recommends this command functionality is achieved using the automations available
with the Netcool/OMNIbus ObjectServer.
Netcool/Precision IP 3.6 Monitoring and RCA Guide192

The Event Correlation Rules
The sub-attributes of run_directives are described in Table 87.

There may be several directives within the square brackets. Directives should be enclosed by curly braces and
separated by commas. If you wish to reference values from event records in send_string, you should
note that, in contrast to the other sub-attributes of execute_rule, run_directives is only run
once, and only against the trigger record. Therefore, a double ampersand reference (&&) has no meaning
within run_directives, and a single ampersand, which usually references the record currently in
scope, in this case always references the trigger record.

run_directives Example

The following example of the run_directives attribute launches a pager script.

run_directives = [
{
subject = "eval(text,‘$Exec’)", // service name of EXEC
copy_values = False,
send_string = "insert into actions.inTray (ActionId, Path, ArgList,

RunCount, ActionState) values
(42, ‘/export/paul/pager.sh’, [‘Come to the office a.s.a.p’], 1, 0);"

}
]

Table 87: run_directives Sub-Attribute Descriptions

Sub-Attribute Description

subject Identifies the service or Netcool/Precision IP component to which you want to send a command.
In the example below, a command is being sent to EXEC.

run_directives = [
{
subject = "eval(text,‘$Exec’)",

For a complete list of the service names of all Precision Server components, see the
Netcool/Precision IP Discovery Configuration Guide.

copy_values Specifies which record is to be used as the template for the record that is being created. The
copy_values attribute is similar to the copy_record attribute used in change_events.
Possible values are:

• true - the values of the trigger record overrides those in the database referenced in the
send_string attribute.

• false - only the values specified in the send_string attribute are inserted into the
target database.

send_string Contains an OQL string that is sent to the service specified in subject. For descriptions of the
OQL syntax and the eval statement, see the Netcool/Precision IP Discovery Configuration Guide.

For the columns and data types of the target database (which constrain the contents of the
send_string attribute), refer to the schema of the relevant database, described in the
Netcool/Precision IP Discovery Configuration Guide.
Netcool/Precision IP 3.6 Monitoring and RCA Guide 193

Chapter 7: Root Cause Analysis
rule_control

The rule_control attribute is a sub-attribute of execute_rule. It allows you to set up virtual
daemons on certain devices, to assist in downstream suppression.

Note: Suppression of downstream alerts begins in the change_events section of the event correlation
rule. A correctly configured event correlation rule can suppress any alerts which already exist in the AMOS
events database. However, you may want to continue suppressing downstream alerts until the original alert
has been cleared. To do this you must set up a virtual daemon to watch each downstream device.

A virtual daemon, when run in a particular event rule, runs on the triggering device, and watches for events
coming from any of the devices specified in the execute_location section of the rule that set up the
daemon. When an event from one of these devices comes into the AMOS events database, the daemon runs
the execute_rule section of the rule which set up the daemon.

Virtual daemons are usually used in downstream suppression, therefore, they are usually run from a rule
whose execute_rule section suppresses downstream events, and whose execute_location
section specifies devices downstream.

Virtual daemons run until they are cleared. They can be cleared by running a specific rule on the device on
which the daemon is running.
Netcool/Precision IP 3.6 Monitoring and RCA Guide194

The Event Correlation Rules
The sub-attributes of rule_control are described in Table 88.

Table 88: rule_control Sub-Attribute Descriptions

Sub-Attribute Description

daemon_running_order Whenever an event from a downstream device comes in to the AMOS Events database,
it has certain event rules run on it, depending on its properties. This is known as
standard event processing. The incoming event may also be suppressed by a virtual
daemon, by having the execute_rule section of the event rule that set up the
daemon run on it. The daemon_running_order attribute specifies whether this
suppression occurs before or after standard event processing. Possible values are:

• 0 - Runs the execute_rule section of the event rule before standard event
processing.

• 1 - Runs the execute_rule section of the event rule after standard event
processing.

• 2 - Never runs the execute_rule section of the event rule.

In the following example, the execute_rule section of the event rule runs after
standard event processing. This is the usual setting.

rule_control = {
daemon_running_order = 1,

set_daemon Activates the daemon. Possible values are:

• true - The daemon is activated

• false - the daemon is prevented from running

clear_daemon Specifies the rule or rules which, when run on the device the daemon is running on,
clears the daemon.

The following example shows the rule_control section with the clear_daemon
attribute specifying two rules (pingFailClearEvent and
linkDownRootCauseSuppressDownstream).

rule_control = {
daemon_running_order = 1,
clear_daemon = ["pingFailClearEvent",

"linkDownRootCauseSuppressDownstream"]
}

Netcool/Precision IP 3.6 Monitoring and RCA Guide 195

Chapter 7: Root Cause Analysis
7.5 TopologicalAlertCorrelation Ruleset

The event correlation policy, or ruleset is a group of linked event correlation rules. The event correlation rules
which constitute a ruleset can be grouped in the following ways:

• The rules in a ruleset can be chained together using the evaluate_ attribute, as described in
firing_condition on page 176.

• Rules can refer to the ruleset to which they belong in their ruleset attribute, as follows:

ruleset = 'TopologicalAlertCorrelation',

By setting this ruleset attribute in your rule, only events which, amongst other conditions, have
been assigned to the ruleset TopologicalAlertCorrelation can run the rule.

An example use for a policy is to correlate ping fails. When a ping fail or restore event occurs you might want
to:

• Escalate the event to root cause if the failure has occurred enough times.

• Suppress any events topologically downstream of the ping fail from the perspective of the polling
station.

• Clear the corresponding ping fail event and reawaken any events that had previously been suppressed
by it.

A single ruleset, the TopologicalAlertCorrelation ruleset, is supplied with Netcool/Precision
IP. This ruleset links event correlation rules to perform the following actions:

• It suppresses alerts on downstream and connected devices based on events received from polling. The
rules that make up the suppression part of the ruleset are described in Suppression on page 197.

• Once the root cause alert has been cleared, AMOS unsuppresses events which had been suppressed
due to this root cause alert. This act of resetting is known as wakeup. The rules that make up the
wakeup part of the ruleset are described in Wakeup on page 199.

Note: The TopologicalAlertCorrelation ruleset is designed to enable effective event
correlation without configuration. It is also extendable should you wish to add your own rules to this ruleset.
Every rule should belong to a ruleset. AMOS gives a warning if you create a rule that does not belong to a
ruleset, although the rule still functions.

When AMOS escalates an alert to root cause, the alert appears in the Netcool/OMNIbus event list as having
severity Critical (red). AMOS sets all the symptom alerts to severity Unknown (purple). Alerts which
AMOS is unable to classify as either root cause or symptoms are set to severity Warning (blue).
Netcool/Precision IP 3.6 Monitoring and RCA Guide196

TopologicalAlertCorrelation Ruleset
When a Clear event is received for a root cause alert, AMOS sets this alert to severity Clear (green). It
unsuppresses all the symptom alerts and sets them to severity Warning (blue). These events remain in the
ObjectServer and depending on whether they are real problems they may be cleared at a later stage, or they
may, in turn, become root causes of other events.

Suppression

The TopologicalAlertCorrelation ruleset performs suppression by applying three different
types of rule in sequence – head rules, transition rules and suppression rules:

• Head Rules: receive events from the Netcool/OMNIbus ObjectServer via the Event Gateway and
determine the device or interface which generated the event.

• Transition Rules: determine whether or not it is necessary to perform suppression on this event.

• Suppression Rules: perform suppression of events on entities downstream and connected to the device
on which the triggering event occurred.

The rules that are involved in suppression within the TopologicalAlertCorrelation ruleset are
listed in Table 89.

Table 89: Rules Involved in Suppression Within the TopologicalAlertCorrelation Ruleset (1 of 3)

Rule Rule Type Description

EntityEventToAlert Head Rule This rule is triggered by an incoming event, known as the triggering
event. The rule determines whether this event already exists in the
mojo.events table, and then takes one of the following actions:

• If the event does not exist, the rule creates a new event based on
this event in the mojo.events table.

• If the event already exists, the rule updates the mojo.events
table to increase the value of the Occurred field, which
indicates how many times this event has occurred.

InterfaceOrModule
EventToAlert

Head Rule This rule carries out the same tasks as the EntityEventToAlert
rule, with the following difference: in the EntityEventToAlert
rule, the incoming event comes directly from the affected entity, while
in this rule the incoming event comes from the main chassis device
rather than directly from the affected entity. The
InterfaceOrModuleEventToAlert rule therefore has to first
determine which is the affected entity by performing a containment
search using the IfIndex field or IfDescr field of the event as a key
to search on.
Netcool/Precision IP 3.6 Monitoring and RCA Guide 197

Chapter 7: Root Cause Analysis
NonTimedAlert
Transition

Transition Rule This rule is fired by one of the head rules, EntityEventToAlert or
InterfaceOrModuleEventToAlert. The rule determines if the
triggering event processed by the relevant head rule is the most
important event on this interface. The most important event
suppresses all other events on the interface.

The rule determines which is the most important event by inspecting
the Precedence value within the config.precedence table for
the triggering event and comparing this Precedence value with the
Precedence values for all other alerts on this interface.

• If the triggering event is the only event on this interface, or if the
Precedence value for the triggering event is higher than the
Precedence value for all other events on this interface, then the
triggering event becomes the root cause on this interface and
suppresses any other events on this interface. The rule then also
fires the suppression rules, SuppressConnectedAlert and
SuppressDownstreamAlerts.

• If the triggering event has a lower Precedence value than one
or more other events on this interface, then this rule terminates
without firing any suppression rules. One of the other events on
this interface will be discovered to be root cause and will initiate
suppression.

For information on how to set the Precedence value within the
config.precedence table, see The precedence Table on page 152.

TimedAlert
Transition

Transition Rule This rule carries out the same task as the
NonTimedAlertTransition rule, with the following differences:

• The TimedAlertTransition rule is not fired by a head rule.
Rather, it fires periodically every 30 seconds.

• It runs against all events in the mojo.events table. It will
therefore process any new event which arrives from the Event
Gateway. This is in contrast to the
NonTimedAlertTransition rule which processes only the
triggering event processed by the relevant head rule.

Table 89: Rules Involved in Suppression Within the TopologicalAlertCorrelation Ruleset (2 of 3)

Rule Rule Type Description
Netcool/Precision IP 3.6 Monitoring and RCA Guide198

TopologicalAlertCorrelation Ruleset
Wakeup

The TopologicalAlertCorrelation ruleset performs wakeup by applying two different types of
rule in sequence – head rules and wakeup rules:

• Head Rules: filter out Clear events received from the Netcool/OMNIbus ObjectServer via the
Event Gateway and determine the device or interface which generated the event.

• Wakeup Rules: unsuppress events on entities downstream and connected to the device on which the
triggering event occurred.

Suppress
ConnectedAlerts

Suppression Rule Suppresses all events which are on devices topologically one hop
away from the root cause event identified by one of the transition
rules. Examples of events which would be suppressed by this rule are
shown in the following:

• Figure 19 Chassis Failure Suppresses Failures On Connected
Interfaces on page 161

• Figure 20 Chassis Failure Suppresses Failures Devices Connected to
Contained Entities on page 162

• Figure 22 Interface Failure Suppresses More Recent Failure On
Directly Connected Neighbor Interface on page 164

This rule also sets up virtual daemons to sweep for further alerts on
connected devices. These daemons are all cleared when a Clear
event is received for the root cause event and subsequently one of the
wakeup rules is run on the root cause event.

Suppress
DownstreamAlerts

Suppression Rule Suppresses all events which are on devices downstream of the root
cause event identified by one of the transition rules. An example of
events which would be suppressed by this rule are shown in Figure 21
Chassis Failure Suppresses Failures On Downstream Entities on page 163.

This rule also sets up virtual daemons to sweep for further alerts on
downstream devices. These daemons are all cleared when a Clear
event is received for the root cause event and subsequently one of the
wakeup rules is run on the root cause event.

Table 89: Rules Involved in Suppression Within the TopologicalAlertCorrelation Ruleset (3 of 3)

Rule Rule Type Description
Netcool/Precision IP 3.6 Monitoring and RCA Guide 199

Chapter 7: Root Cause Analysis
The rules that are involved in wakeup within the TopologicalAlertCorrelation ruleset are listed
in Table 90.

Table 90: Rules Involved in Wakeup Within the TopologicalAlertCorrelation Ruleset

Rule Rule Type Description

EntityClearEvent Head Rule This rule corresponds to the EntityEventToAlert rule. That rule
creates a new alert (or updates an existing alert) based on an event
indicating a problem. This rule clears that alert (if it exists).

This rule is triggered by an incoming Clear event. This type of event
indicates that a problem on an entity has cleared. The rule determines
whether a corresponding problem-indicating alert exists for this entity
in the mojo.events table and then takes one of the following
actions:

• If there is no such problem-indicating alert in the mojo.events
table, the rule creates a new Clear alert in the mojo.events
table based on the newly arrived event.

• If a problem-indicating alert already exists, the rule updates the
mojo.events table to change the severity of the event to
Clear. This clears the root cause alert identified in one of the
transition rules.

InterfaceOrModule
Clear

Head Rule This rule carries out the same tasks as the EntityClearEvent rule,
with the following difference: in the EntityClearEvent rule, the
incoming event comes directly from the affected entity, while in this
rule the incoming event comes from the main chassis device rather
than directly from the affected entity. The InterfaceOrModule
Clear rule therefore has to first determine which is the affected
interface by performing a containment search using the IfIndex
field or IfDescr field of the event as a key to search on.

ClearEventAwaken
Connected

Suppression Rule This rule corresponds to the SuppressConnectedAlerts rule.
That rule suppresses all events which are on devices topologically one
hop away from the root cause event. This rule unsuppresses all these
symptom events.

ClearEventAwaken
Downstream

Suppression Rule This rule corresponds to the SuppressDownstreamAlerts rule.
That rule suppresses all events which are on devices downstream of
the root cause event. This rule unsuppresses all these symptom events.
Netcool/Precision IP 3.6 Monitoring and RCA Guide200

Index
Monitoring_&_RCA_GuideIX.fm August 8, 2006 12:11 pm

Index

 ncp_m_visionary, see Visionary polling agent

A
actionfilter and filter, in event correlation rules 191

agent, command line options 24

AMOS

correlation rule chaining 173

databases 168

event correlation policies 196

event correlation rules 173

introduction 19

prerequisites for 166

process flow 167

receiving events from the gateway 153

starting 167

AOCs

editing using the MONITOR Configuration tool 52

planning classes 87

audience definition 2

auditData field, entering data when suspending polling 26

AUTH, configuring for the MONITOR Configuration tool 54

C
chaining rules, in AMOS 173

change_events, event correlation rule attribute 188

Cisco Power Supply, stitcher for monitoring 99

CLASS

configuring for the MONITOR Configuration tool 54

icons in the MONITOR Configuration tool 61

introduction 22

create_events, event correlation rule attribute 185

CTRL

introduction 22

D
databases

AMOS 168

gateway 142

MONITOR 37

polling agents 42

delete_events, event correlation rule attribute 191

delta polling, SNMP 33

DISCO, introduction 22

downstream suppression 194

E
entity_activity_state, event correlation rule attribute 184

event

correlation policies 196

correlation rules, AMOS 173

correlation rules, precedence of attributes 174

mappings 148, 150

event gateway, see gateway

execute_location, event correlation rule attribute 178

execute_rule, event correlation rule attribute 184

F
filter and actionfilter, in event correlation rules 191

Filter Builder window 64

Filter Condition Editor window 66

firing_condition

event correlation rule attribute 176

example 177

flapping interface, stitcher for detecting 92, 95
Netcool/Precision IP 3.6 Monitoring and RCA Guide 201

Index
G
gateway

command line options 140

databases 142

introduction 18

logging into the databases using OQL 142

operation of 137

process flow 137

sending events to AMOS 153

synchronizing the ObjectServer and the AMOS
databases 139

updating the topology cache 139

generic trap, stitcher for reporting 96

I
Instantiate rule 64

Interfaces

stitcher for detecting flapping 92, 95

stitcher for monitoring status of 98

M
Menu Builder window 68

Menu methods, constructing 68

MIBs, traps in 33

MODEL, introduction 22

MONITOR

command line options 23

databases 37

prerequisites 22

starting 22

monitor agents,see polling agents

MONITOR Configuration tool 60

CLASS icons 61

Filter Builder window 64

Filter Condition Editor window 66

high level mode 55

introduction 52

latency 71

Login window 58

low level mode 55

main view 59

managing classes 60

Menu Builder window 68

navigation 58

Open window for icons 62

OQL access 55

panner tool 60

Policy Editor window 70

Poll Editor window 72

prerequisites 54

starting 56

MONITOR probe

configuring 132

installation directory 128

map file 133

overview 128

properties file 132

rules file 133

sending events to the ObjectServer 131

starting 129

stitcher agent starting 131

monitoring

introduction 12

polling process 13

polling process flow 29

resuming polling 27

starting MONITOR 22

suspending polling 25, 26

suspending polling overview 17

N
nco_p_ncpmonitor 128

ncp_m_syslogstitcher 24

ncp_m_timedstitcher

for ping polling 29

for SNMP polling 32

function 24

ncp_m_trapstitcher 24

ncp_ncogate, see gateway
Netcool/Precision IP 3.6 Monitoring and RCA Guide202

Index
Netcool Knowledge Library

and Netcool/Precision IP 15

overview 128

Netcool/OMNIbus

event enrichment 18

probe integration with Netcool/Precision IP 15

probes as alternative to polling agents 166

Netcool/Precision IP

and Netcool Knowledge Library 15

and Netcool/OMNIbus probes 15

architecture of monitoring and RCA 12

integration with Netcool/Visionary 14

Netcool/Visionary

and Visionary polling agent 16

DSM address 79

DSM name 79

DSM requirements 16

integration with Netcool/Precision IP 14

limitations on SNMP compatibility 16

O
OQL service provider

logging in 26

logging into the gateway databases 142

P
panner tool 60

ping polling

function of 16

process flow 29

stitcher for 97

Policy Editor window 70

poll definitions

adding filters 85

editing 73

introduction 52

mandatory attributes 91

Visionary 13

Poll Editor window 72

adding filters 85

editing poll definitions 73

Values Editor window 74

PollerDoesTableExist, stitcher rule 105

PollerDoPing, stitcher rule 105

PollerGetLocalIpAddr, stitcher rule 107

PollerGetPollDef, stitcher rule 107

PollerInsertRecords, stitcher rule 109

PollerIntDeltaRecordList, stitcher rule 110

PollerMibTextToOid, stitcher rule 111

polling agents

and Netcool/OMNIbus probes 166

customizing 17

databases 42

introduction 13

ping polling 29

polling process flow 29

polling suspension text in auditData 26

resuming polling 27

SNMP polling 31

starting 23

suspending polling 25, 26

suspending polling overview 17

syslog monitoring 35

syslog polling database schema 46

trap monitoring 33

trap polling database schema 48

user-defined 17

Visionary 14, 16

polling policies

configuring 71

editing 70

R
RCA

examples 158–165

introduction 12

process overview 19

RCA example

connected interfaces 161

contained interfaces 160
Netcool/Precision IP 3.6 Monitoring and RCA Guide 203

Index
directly connected interface 164

downstream chassis devices 163

downstream suppression at edge 165

entities connected to contained entity 161

related logical interface 164

root cause analysis, see RCA

rule

chaining 173

stitcher rules for polling agents 104

rule_control, event correlation rule attribute 194

rulename, event correlation rule attribute 176

ruleset, event correlation rule attribute 176

run_directives, event correlation rule attribute 192

run_in_container, event correlation rule attribute 181

run_on_devices, event correlation rule attribute 179

S
SendEvent

overview 114

stitcher rule 114

SNMP

agent, function of 16

polling, process flow 31

stitcher for monitoring interface traffic 102

stitcher for monitoring IP traffic 101

stitcher for monitoring TCP traffic 103

stitchers

ampersand usage in 116

example stitcher, commented 122

external variables 119

global scope 117

introduction 90

model instance 117

model record 117

monitoring stitchers 91

poll definitions 117, 120

precompiled 91

rules for polling agents 104

rules overview 104

scope in 116

text based structure 118

text-based, list of 99

trigger record 117

syslog

monitoring, process flow 35

stitcher for 101

Syslog polling agent

database schema 46

introduction 15

SysUpTime, stitcher for monitoring 103

T
threshold polling, stitcher for 100

timed polling agents

databases 42

introduction 15

starting 23

trap monitoring

known traps 34

process flow 33

unknown traps 35

Trap polling agent

database schema 48

introduction 15

triggered polling agents

databases 42

introduction 14

starting 23

V
Values Editor window 74

virtual daemons, setting up 194

Visionary

poll definition 13

polling agent 14

Visionary polling agent

and Netcool/Visionary 16

overview 16

scope 16
Netcool/Precision IP 3.6 Monitoring and RCA Guide204

backmatter.fm August 8, 2006

Contact Information
Corporate

Region Address Telephone Fax World Wide Web

USA Micromuse Inc. (HQ)
650 Townsend Street
San Francisco
CA 94103
USA

1-800-Netcool (638 2665)

+1 415 568 9800

+1 415 568 9801 http://www.micromuse.com

Europe Micromuse Ltd.
Disraeli House
90 Putney Bridge Road
London SW18 1DA
United Kingdom

+44 (0) 20 8875 9500 +44 (0) 20 8875 9995 http://www.micromuse.co.uk

Asia-Pacific Micromuse Ltd.
Level 25
77 St Georges Terrace
Perth WA 6000
Australia

+61 (0) 8 9213 3400 +61 (0) 8 9325 5030 http://www.micromuse.com.au

Technical Support

Region Telephone Fax

USA 1-800-Netcool (800 638 2665)

+1 415 568 9800 (San Francisco)

+1 415 568 9801

Europe +44 (0) 20 8877 0073 (London, UK) +44 (0) 20 8875 0991

Asia-Pacific +61 (0) 8 9213 3470 (Perth, Australia)

+10 800 852 1012 (North China)

+10 800 152 1012 (South China)

+61 (0) 8 9486 1116

Online

Team E-Mail World Wide Web

Licensing Temporary Licenses: temp.licensing@micromuse.com

Permanent Licenses: perm.licensing@micromuse.com

support.micromuse.com/helpdesk/licenses

Support support@micromuse.com support.micromuse.com
Netcool/Precision IP 3.6 Monitoring and RCA Guide 205

http://support.micromuse.com/helpdesk/licenses
http://support.micromuse.com
http://www.micromuse.com
mailto:support@micromuse.com
mailto:temp.licensing@micromuse.com
http://www.micromuse.co.uk
mailto:perm.licensing@micromuse.com
http://www.micromuse.com.au

Contact Information
Netcool/Precision IP 3.6 Monitoring and RCA Guide206

	Contents
	Preface
	Audience
	About this Guide
	Associated Publications
	Netcool®/OMNIbus™ Installation and Deployment Guide
	Netcool®/OMNIbus™ User Guide
	Netcool®/OMNIbus™ Administration Guide
	Netcool®/OMNIbus™ Probe and Gateway Guide
	Netcool®/Precision IP™ Installation and Deployment Guide
	Netcool®/Precision IP™ Discovery Configuration Guide
	Netcool®/Precision IP™ Monitoring and RCA Guide
	Netcool®/Precision IP™ Desktop Guide
	Netcool®/Precision IP™ Topology Visualization Guide
	Netcool GUI Foundation™ Administration Guide
	Netcool Licensing™ Administration Guide
	Online Help

	Typographical Notation
	Note, Tip, and Warning Information
	Syntax and Example Subheadings

	Operating System Considerations

	Chapter 1: Overview of Monitoring and Root Cause Analysis
	1.1 Introduction
	1.2 The Polling Process
	Triggered Polling Agents
	Timed Polling Agents
	Visionary Polling Agent
	User-Defined Polling
	Poll Suspension

	1.3 The Event Enrichment Process
	1.4 The Root Cause Analysis Process

	Chapter 2: Network Polling
	2.1 Starting MONITOR and Polling Agents
	Prerequisites
	Starting MONITOR
	Starting Polling Agents

	2.2 Manually Suspending Polling
	Logging in to the OQL service provider
	Suspending Polling
	Resuming Polling

	2.3 Default Polling Process Descriptions
	Ping Polling
	SNMP Polling
	Trap Monitoring
	Syslog Polling

	2.4 MONITOR Database Reference
	The polldefCache Database Schema
	The class Database Schema
	The agentInfo Database Schema
	The polls Database Schema
	The config Database Schema

	2.5 Polling Agent Database Reference
	The topoCache Database Schema
	The polldefCache database schema
	The triggers Database Schema for Syslog Polling
	The trapAgent Database Schema
	The triggers Database Schema for Trap Polling

	Chapter 3: MONITOR Configuration Tool
	3.1 Overview of the MONITOR Configuration Tool
	Poll Definitions
	Event Correlation Rules
	Customizing the AOCs Manually

	3.2 Starting the MONITOR Configuration Tool
	Configuring CLASS for the MONITOR Configuration Tool
	Configuring AUTH for the MONITOR Configuration Tool
	MONITOR Configuration Tool User Modes
	Starting the MONITOR Configuration Tool

	3.3 Navigating the MONITOR Configuration Tool
	Logging into the MONITOR Configuration Tool
	The Main View
	Using the Panner and Zoom Functions
	MONITOR Configuration Tool Buttons
	Class Icons

	3.4 Modifying the Instantiate Rule for a Class
	Filter Builder Modes of Operation
	Constructing Complex Rules
	The Filter Condition Editor

	3.5 Editing Menus in the Precision Desktop
	3.6 Managing Policies
	Selecting and Configuring Polling Policies

	3.7 Editing Poll Definitions
	Editing a Poll Definition

	3.8 Planning your Classes

	Chapter 4: Stitchers Used for Polling
	4.1 Introduction to Stitchers
	4.2 Monitoring Stitchers
	Poll Definition Attributes
	Precompiled Stitchers
	Text-Based Stitchers

	4.3 Stitcher Rules
	Stitcher Rules for MONITOR and DISCO
	Stitcher Rules for Polling Agents

	4.4 Creating and Editing Stitchers
	Stitcher Scope
	Stitcher Structure
	Poll Definitions and Stitchers

	4.5 Example Poll Definition and Stitcher
	Poll description
	Poll definition
	Stitcher

	Chapter 5: The MONITOR Probe and Netcool/OMNIbus Probes
	5.1 Overview of the MONITOR Probe
	5.2 Starting the MONITOR Probe
	Manually Starting the MONITOR Probe

	5.3 The Probe and the Monitoring Subsystem
	5.4 Configuring the MONITOR Probe
	Properties File
	Map File
	Rules File

	Chapter 6: The Event Gateway
	6.1 Introduction to the Event Gateway
	6.2 Operation of the Gateway
	Event Gateway Process

	6.3 Starting the Event Gateway
	Manually Starting the Event Gateway

	6.4 The Gateway Databases
	Logging into the Gateway Databases Using the OQL Service Provider
	Applying Configuration Changes to the Gateway
	The topoCache Database Schema
	The config Database Schema

	6.5 Sending Events to AMOS
	Example Insert

	Chapter 7: Root Cause Analysis
	7.1 Introduction to Root Cause Analysis
	Architecture of Root Cause Analysis
	Mechanism of Root Cause Analysis
	Examples of Root Cause Analysis

	7.2 Starting AMOS
	Prerequisites for Starting AMOS
	Manually Starting AMOS
	Process Flow in AMOS

	7.3 AMOS Databases
	mojo.events Events Database Table
	topoCache.entityByName Entity Database Table

	7.4 The Event Correlation Rules
	Inherited Rules
	Rule Chaining
	Event Rule Attributes
	rulename
	ruleset
	firing_condition
	execute_location
	execute_rule

	7.5 TopologicalAlertCorrelation Ruleset
	Suppression
	Wakeup

	Index
	Contact Information

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f00200063007200650061007400650020004d006900630072006f006d007500730065002000500044004600200064006f00630075006d0065006e00740073002e000d004d006900630072006f006d00750073006500200049006e0063002e00200032003000300035>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

